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3 Theorems and Proofs

A theorem is any mathematical statement, such as a formula of first-order
logic, that has been proved true. When you are about to prove a theorem, you
call it theorem as a way of promising that a proof is about to be produced.

3.1 What is a proof?

There are many different precise definitions of a proof. But most mathe-
maticians accept an informal definition: a proof is a clear and unambiguous
argument that a mathematical statement is true that any sufficiently knowl-
edgeable person can check. The key is that a reader must be able to check
that each step is correct.

Students who are just learning to do proofs make many different kinds of
mistakes, but most fall into one of the following two categories.

1. The student does not check his or her own work. The reason
can vary from lack of time to lack of understanding to fear of failure.

A student might take a proof of something else from a book or from
notes and make some modifications to it, and then hope that the modi-
fications have produced a correct proof, without checking whether that
is true. The student who has a lack of understanding cannot check the
proof. The student who is afraid of failure will not check the proof out
of fear that it might turn out to be incorrect.

Regardless of your reason for not checking your proof, you can be sure
that an unchecked proof is incorrect, for the same reasons that an
untested computer program does not work. You will need to find a
way to motivate yourself to check your proofs carefully.

2. Mathematics relies on precise definitions. When you do a proof, it is
essential for you to use definitions wherever appropriate. Students
often get stuck in a proof because they have forgotten to use
definitions. Any time you cannot see how to proceed, ask yourself if
using a definition will help. We will do many examples of that.
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3.2 Forward proofs

A forward proof reasons from what you know to what you can conclude.
Each new conclusion relies on prior knowledge or conclusions.

You have probably been taught a different approach in an algebra class. In a
backwards proof , you write down what you want to show and then perform
some manipulations on it, working backwards to a statement that you already
know is true.

In this class, we will do forward proofs, with minor excursions using back-
wards reasoning. I expect you to use forward proofs as well. At least
for this class, put aside the backwards proofs that you have learned in alge-
bra.

In this section, I do proofs at two different levels of detail. One of the proof
works in small steps and shows everything that you know after each step.
The other proof is more typical of what you would write, and what I want
to see from you.

3.3 Some definitions

Definition 3.1. Integer n is even if there exists an integer m such that
n = 2m. For example, 6 is even because 6 = (2)(3).

Definition 3.2. Integer n is odd if there exists an integer m such that
n = 2m + 1. We will also make use of the fact that, for every n, n is odd if
and only if n is not even.

Definition 3.3. Integer n is a perfect square if there exists an integer m
such that n = m2.

Definition 3.4. Real number x is rational if there exist integers n and m
where m 6= 0 such that x = n/m.

3.4 Proof techniques

The remaining subsections discuss common ways of proving particular kinds
of first-order formulas.
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3.5 Proving A→ B

To prove A→ B, assume that A is true and show that B is true.

Theorem 3.1. If n is even then n2 is even.

Detailed Proof.

1. Suppose that n is even.

Known variables: n

Know: n is even.

Goal: n2 is even.

2. By the definition of an even integer, there exists an integer m such that
n = 2m.

Known variables: n, m

Know: n is even.

Know: n = 2m.

Goal: n2 is even.

3. Since n = 2m, n2 = (2m)2 = 4m2 = 2(2m2).

Known variables: n, m

Know: n is even.

Know: n = 2m.

Know: n2 = 2(2m2).

Goal: n2 is even.

4. So n2 = 2(x) where x = 2m2. Using the definition of an even number
again, n2 is even.

♦ ♦

Typical Proof. Suppose n is even. By the definition of an even integer,
there is an integer m such that n = 2m. So

n2 = (2m)2 = 4m2 = 2(2m2).
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By the definition of an even integer, n2 is even.

♦ ♦

Theorem 3.2. If n and m are perfect squares then nm is a perfect square.

Detailed Proof.

1. Suppose that n and m are perfect squares.

Known variables: n, m

Know: n is a perfect square.

Know: m is a perfect square.

Goal: nm is a perfect square.

2. By the definition of a perfect square, there exist integers x and y such
that n = x2 and m = y2.

Known variables: n, m, x, y

Know: n = x2.

Know: m = y2.

Goal: nm is a perfect square.

3. Replacing n by x2 and m by y2, nm = x2y2 = (xy)2.

Known variables: n, m, x, y

Know: n = x2.

Know: m = y2.

Know: nm = (xy)2.

Goal: nm is a perfect square.

4. So nm = z2 where z = xy. Using the definition of a perfect square
again, nm is perfect square.

♦ ♦

Typical Proof. Suppose that n and m are perfect squares. By the definition
of a perfect square, there exist integers x and y such that n = x2 and m = y2.
Replacing n by x2 and m by y2,

nm = x2y2 = (xy)2.
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So nm is a perfect square.

♦ ♦

3.5.1 Using the contrapositive

You can prove any theorem by proving an equivalent mathematical state-
ment. For example, you can prove A → B by proving equivalent formula
¬B → ¬A, which is called the contrapositive of A→ B. Here is an example.

Theorem 3.3. Suppose n is an integer. If 3n + 2 is odd, then n is odd.

Detailed Proof. We prove the contrapositive: If n is not odd then 3n + 2
is not odd.

1. We know that an integer x is even if and only if x is not odd. So what
we want to prove is equivalent to: If n is even then 3n + 2 is even.

Known variables: n

Goal: If n is even then 3n + 2 is even.

2. Suppose that n is even.

Known variables: n

Know: n is even.

Goal: 3n + 2 is even.

3. By the definition of an even integer, there exists an integer m such that
n = 2m.

Known variables: n, m

Know: n = 2m.

Goal: 3n + 2 is even.

4. 3n + 2 = 3(2m) + 2 = 6m + 2 = 2(3m + 1).
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Known variables: n, m

Know: n = 2m.

Know: 3n + 2 = 2(3m + 1).

Goal: 3n + 2 is even.

5. Using the definition of an even integer again, 3n + 2 is even because
3n + 2 = 2z where z = 3m + 1.

♦ ♦

Typical Proof. We prove the contrapositive: If n even then 3n + 2 is even.

Suppose n is even. Then there exists an integer m such that n = 2m.

3n + 2 = 3(2m) + 2 = 6m + 2 = 2(3m + 1).

Since 3n + 2 is twice an integer, 3n + 2 is even.

♦ ♦

3.6 Proving and using A ∧B

To prove A ∧B, prove A and prove B.

If you know that A ∧B is true, then you know that A is true and you know
that B is true.

3.7 Proving and using ¬(A)

To prove ¬(A), you typically use DeMorgan’s laws and the laws for negating
quantified formulas to push the negation inward. For example, to prove
¬(A ∧ B), you prove equivalent formula ¬A ∨ ¬B. To prove ¬(∀xA), you
prove equivalent formula ∃x(¬A).

The same principle applies when you already know ¬(A). For example, if
you know ¬(A → B), you can conclude equivalent formula A ∧ ¬B. You
write that down as an additional known fact.
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3.8 Proving and using A ∨B

To prove A ∨ B, you usually prove one of the equivalent formulas ¬A → B
or ¬B → A.

Suppose that you know that A∨B is true and you want to use that to show
that C is true. That is, you want to show that A ∨ B → C is true. You
typically prove equivalent formula

A→ C ∧ B → C.

That is called proof by cases. First, you assume that A is true and show that
C is true. Next, you assume that B is true and show that C is true. See
Section 3.

3.9 Proving and using ∃xA

To prove that something exists, produce it.

Theorem 3.4. There exists an integer n where n is even and n is prime.

Proof. Choose n = 2. Notice that n is even and n is prime.

♦ ♦

3.9.1 Using existential knowledge

Sometimes, instead of needing to prove ∃xP (x), you already know ∃xP (x).
What do you do? You ask somebody else to give you a value x so that P (x)
is true. It is not necessary for you to say how to find x. We will encounter
many examples of that.

3.10 Proving ∀xA

To prove ∀xP (x), prove P (x) for an arbitrary value of x.

That does not mean that you can choose the value of x. Rather, someone else
chooses x and you must prove that P (x) is true for that value of x. Think of
it as a challenge. You say to someone else, give me any value of x that you
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like. I will prove that P (x) is true. In mathematics, arbitrary always means
a value chosen by someone else.

We have actually used this idea above. When the statement of a theorem
involves unbound variables, it is assumed to be saying that the statement is
true for all values of those variables. Here is the first proof above with the
quantifier explicit. The universe of discourse is the set of all integers.

Theorem 3.5. ∀n(n is even → n2 is even).

Detailed Proof.

1. Ask someone else to select an arbitrary integer n. (We cannot assume
anything about n except that it belongs to the universe of discourse.)
We must prove: (n is even → n2 is even) for that n.

Known variables: n

Goal: n is even → n2 is even.

2. Suppose that n is even.

Known variables: n

Know: n is even.

Goal: n2 is even.

3. By the definition of an even integer, there exists an integer m such that
n = 2m.

Known variables: n

Know: ∃m(n = 2m).

Goal: n2 is even.

4. Ask someone else to provide the integer m that is asserted to exist.

Known variables: n, m

Know: n = 2m.

Goal: n2 is even.
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5. Since n = 2m, n2 = (2m)2 = 4m2 = 2(2m2).

Known variables: n, m

Know: n = 2m.

Know: n2 = 2(2m2).

Goal: n2 is even.

6. So n = 2(x) where x = 2m2. Using the definition of an even number
again, n is even.

♦ ♦

Typical Proof. Let n be an arbitry even integer. By the definition of an
even integer, there exists an integer m such that n = 2m. So

n2 = (2m)2 = 4m2 = 2(2m2).

Evidently, n2 is even.

♦ ♦

3.10.1 Proof by contradiction

You can prove any theorem by proving an equivalent theorem. We have seen
propositional tautology

P ≡ (¬P → F).

That is, to prove P , assume that P is false and prove that F is true. That
is called proof by contradiction. Let’s use proof by contradition to reprove a
theorem that we proved above.

Theorem 3.6. For every integer n, if 3n + 2 is odd, then n is odd.

Detailed Proof.

1. Reasoning by contradiction, we can assume the theorem is false and
prove F. That is:

Know: ¬∀n(3n + 2 is odd → n is odd).

Goal: F.
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2. We can push the negation across the quantifier using valid formula
¬∀xA ≡ ∃x(¬A)).

Know: ∃n(¬(3n + 2 is odd → n is odd)).

Goal: F.

3. Now use the tautology that ¬(P → Q) ≡ P ∧ ¬Q).

Know: ∃n(3n + 2 is odd ∧ n is even).

Goal: F.

4. Ask somebody else to select an integer n such that 3n + 2 is odd and
n is even.

Known variables: n

Know: 3n + 2 is odd.

Know: n is even.

Goal: F.

5. By the definition of an even integer, saying that n is even is equivalent
to saying that there exists an integer m such that n = 2m. (Existential
information is useful because it allows you to get something in hand,
as is done in the next step. So you often want to exploit existential
information.)

Known variables: n

Know: 3n + 2 is odd.

Know: ∃m(n = 2m).

Goal: F.

6. Since we know that an integer m exists such that n = 2m, we can ask
somebody else to give us such an m. Let’s do that.

Known variables: n, m

Know: 3n + 2 is odd.

Know: n = 2m.

Goal: F.
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7. Since we know that n = 2m, it seems reasonable to substitute 2m for
n in expression 3n + 2 to see what we get. Doing that gives

3n + 2 = 3(2m) + 2 = 6m + 2 = 2(3m + 1).

So 3n + 2 is even. Recording that:

Known variables: n, m

Know: 3n + 2 is odd.

Know: n = 2m.

Know: 3n + 2 is even.

Goal: F.

8. But 3n + 2 cannot be both even and odd. Formula (3n + 2 is odd ∧
3n+ 2 is even) is equivalent to F. So we have concluded that F is true
and we are done.

♦ ♦

Typical Proof. By contradiction. Assume there exists an n such that 3n+2
is odd but n even) Since n is even, there exists an integer m so that n = 2m.
So

3n + 2 = 3(2m) + 2 = 6m + 2 = 2(3m + 1).

That means 3n+ 2 is even, contradiction the assumption that 3n+ 2 is odd.

♦ ♦

3.11 Proving ∀x(∃yA)

It is common to encounter theorems whose general form is ∀x(∃yP (x, y)).
The proof usually involves finding an algorithm. For any x, the algorithm
must find a y so that P (x, y) is true. Here is an example.

Theorem 3.7. For all real numbers x and y, if x and y are both rational
numbers then x + y is also a rational number.

Detailed Proof.
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1. Ask someone else to select arbitrary real numbers of x and y.

Known variables: x, y

Goal: If x and y are rational then x + y is rational.

2. Assume that x and y are rational.

Known variables: x, y

Know: x is rational.

Know: y is rational.

Goal: x + y is rational.

3. Our knowledge involves the term rational. We need to know what
that means. From the definition of a rational number, there must exist
integers a and b where b 6= 0 and x = a/b; and there must exist integers
c and d where d 6= 0 and y = c/d.

Known variables: x, y, a, b, c, d

Know: a, b, c and d are integers.

Know: b 6= 0.

Know: d 6= 0.

Know: x = a/b.

Know: y = c/d.

Goal: x + y is rational.

4. Since the goal is to show that x + y is rational, let’s replace x by a/b
and replace y by c/d in expression x + y.

x + y = a/b + c/d = ad/bd + bc/bd = (ad + bc)/bd.
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Known variables: x, y, a, b, c, d

Know: a, b, c and d are integers.

Know: b 6= 0.

Know: d 6= 0.

Know: x = a/b.

Know: y = c/d.

Know: x + y = (ad + bc)/bd.

Goal: x + y is rational.

5. But we have shown that x + y is the ratio of integers ad + bc and bd.
Since neither b nor d is 0, bd cannot be 0. So x + y is rational, by the
definition of a rational number.

♦ ♦

Typical Proof. Let x and y be arbitrary rational numbers. By the definition
of a rational number, there exists integers a, b, c and d (b 6= 0 and d 6= 0)
such that x = a/b and y = c/d. Then

x + y = a/b + c/d = ad/bd + bc/bd = (ad + bc)/bd.

Since x + y is the ratio of two integers, x + y is rational. (You can observe
that bd 6= 0 since the product of two nonzero numbers is nonzero.)

3.12 Proving A ≡ B or A↔B

There are two commonly used ways of proving A ≡ B.

3.12.1 Using direct equivalences

You can treat ≡ in a way similar to the way you treat = in algebraic equa-
tions, performing equivalence-preserving manipulations. Let’s use that ap-
proach to prove the law of the contrapositive.

Theorem 3.8. P → Q ≡ ¬Q→ ¬P .
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Proof.

¬Q→ ¬P ≡ ¬(¬Q) ∨ ¬P (defn of →)

≡ Q ∨ ¬P (double negation)

≡ ¬P ∨Q (commutative law of ∨)

≡ P → Q (defn of →)

3.12.2 Proving two implications

Sometimes it is preferable to use the definition of P↔Q, namely P → Q ∧
Q→ P .

Theorem 3.9. For every integer n, n is odd if and only if n2 is odd.

Detailed Proof.

1. It suffices to prove

∀n(n is odd → n2 is odd ∧ n2 is odd → n is odd).

That gives two goals. We use tautology ∀x(A ∧ B) ≡ ∀xA ∧ ∀xB
and change the variable names so that we can look at the two parts
separately without variables from one interfering with the other.

Goal (1): ∀n(n is odd → n2 is odd).

Goal (2): ∀m(m2 is odd → m is odd).

2. Ask someone else to choose arbitrary values of m and n.

Known variables: n, m

Goal (1): n is odd → n2 is odd.

Goal (2): m2 is odd → m is odd.

3. Goal (2) is equivalent to its contrapositive, m is even → m2 is even.
We proved that as Theorem 3.1. That only leaves Goal (1). (We know
goal (2), but we can always discard known things to simplify.)

Known variables: n

Goal (1): n is odd → n2 is odd.
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4. To prove Goal (1), assume that n is odd.

Known variables: n

Know: n is odd.

Goal (1): n2 is odd.

5. Since n is odd, there exists an integer k so that n = 2k + 1.

Known variables: n

Know: ∃k(n = 2k + 1).

Goal (1): n2 is odd.

6. Ask someone else to provide a value k such that n = 2k + 1.

Known variables: n, k

Know: n = 2k + 1.

Goal (1): n2 is odd.

7. Since n = 2k + 1,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Since n2 = 2z + 1 for z = 2k2 + 2k, it is evident that n2 is odd.

♦ ♦

Typical Proof.

(a) (n is odd → n2 is odd) Assume that n is odd. By the definition of an
odd integer, there is an integer k such that n = 2k + 1. So

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

By the definition of an odd integer, n2 is odd.

(b) (n2 is odd → n is odd) This is equivalent to (n is even → n2 is even),
which we profed earlier as Theorem 3.1.

♦ ♦
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3.13 Proof by cases

Proof by cases involves proving two or more implications. You must be
careful that assumptions made during one of those cases are not still in place
when proving another one. Think of this is similar to calling a function in
a program. Each time a function is called, a new frame is created, so that
calling f(3) does not interfere with a later call to f(4).

Theorem 3.10. For every integer n, n2 ≥ n.

Detailed Proof.

1. Ask someone to select an arbitrary integer n.

Known variables: n

Know: n is an integer

Goal: n2 ≥ n.

2. Let’s break proving the goal into three cases: n = 0, n > 0 and n < 0.

Known variables: n

Know: n is an integer

Goal (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

3. Goal (1) is clearly true since 02 ≥ 0. Let’s record it among the known
facts.

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.
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4. Goal (2) is an implication, so we should assume that n > 0 and prove
that n2 ≥ n. But let’s prove that as a separate subproof. Knowledge
and goals that are local to the proof of goal (2) is numbered 2.1, 2.2,
etc., and they can only be used to establish goal (2).

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

Know (2.1): n > 0

Goal (2.1): n2 ≥ n

5. Since n > 0 is an integer, it must be the case that n ≥ 1.

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

Know (2.1): n ≥ 1

Goal (2.1): n2 ≥ n

Multiplying both sides of fact (2.1) by n preserves the inequality be-
cause n > 0. That gives n · n ≥ n · 1, or equivalently, n2 ≥ n.
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Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

Know (2.1): n ≥ 1

Know (2.2): n2 ≥ n

Goal (2.1): n2 ≥ n

6. We have succeeded in proving goal (2). Notice that fact (2.2) cannot
be used to establish goal (4) since it depends on the assumption that
n > 0.

We can move goal (2) into our knowledge. But we must also throw out
parts that were local to the proof of goal (2).

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Know (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

7. Now we need to prove goal (3). Assume that n < 0. But the square
of any number is nonnegative. It follows that n2 ≥ 0 > n, and we can
move goal (3) into what we know.

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Know (2): n > 0→ n2 ≥ n.

Know (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.
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8. Propositional formula

((P → S) ∧ (Q→ S) ∧ (R→ S))→ ((P ∨Q ∨R)→ S)

is a tautology. That means known facts (1), (2) and (3) imply

(n = 0 ∨ n > 0 ∨ n < 0)→ n2 ≥ n.

But we know that (n = 0 ∨ n > 0 ∨ n < 0) is true, and T → S is
equivalent to S. So we have demonstrated goal (4).

♦ ♦

Typical Proof. The proof is by cases (n = 0, n > 0 and n < 0).

Case 1 (n = 0). Then n2 ≥ n because 02 ≥ 0.

Case 2 (n > 0). The smallest positive integer is 1, so n > 0 implies n ≥ 1.
Multiplying both sides of inequality n ≥ 1 by positive number n gives n2 ≥ n.

Case 3 (n < 0). n2 ≥ 0 for all numbers n. Since, in this case, n is negative,
clearly n2 ≥ n.

♦ ♦
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