2 First-Order Logic

First-order logic (also called predicate logic) is an extension of propositional logic that is much more useful than propositional logic. It was created as a way of formalizing common mathematical reasoning.

In first-order logic, you start with a nonempty set of values called the domain of discourse U. Logical statements talk about properties of values in U and relationships among those values.

2.1 Predicates

In place of propositional variables, first-order logic uses predicates.
Definition 2.1. A predicate P takes zero or more parameters $x_{1}, x_{2}, \ldots, x_{n}$ and yields either true or false. First-order formula $P\left(x_{1}, \ldots, x_{n}\right)$ is the value of predicate P with parameters x_{1}, \ldots, x_{n}. A predicate with no parameters is a propositional variable.

Suppose that the domain of discourse U is the set of all integers. Here are some examples of predicates. There is no standard collection of predicates that are always used. Rather, each of these is like a function definition in a computer program; different programs contain different functions.

- We might define even (n) to be true if n is even. For example even(4) is true and even(5) is false.
- We might define $\operatorname{greater}(x, y)$ to be true if $x>y$. For example, $\operatorname{greater}(7,3)$ is true and greater $(3,7)$ is false.
- We might define increasing (x, y, z) to be true if $x<y<z$. For example, increasing $(2,4,6)$ is true and increasing $(2,4,2)$ is false.

2.2 Terms

A term is an expression that stands for a particular value in U. The simplest kind of term is a variable, which can stand for any value in U.
A function takes zero or more parameters that are members of U and yields a member of U. Here are examples of functions that might be defined when U is the set of all integers.

- A function with no parameters is called a constant. We might define function zero with no parameters to be the constant 0 .
- We might define successor (n) to be $n+1$. For example, $\operatorname{successor}(2)=$ 3.
- We might define $\operatorname{sum}(m, n)$ to be $m+n$. For example, $\operatorname{sum}(5,7)=12$.
- We might define largest (a, b, c) to be the largest of a, b and c. For example, $\operatorname{largest}(3,9,4)=9$ and largest $(4,4,4)=4$.

Definition 2.2. A term is defined as follows.

1. A variable is a term. We use single letters such as x and y for variables.
2. If f is a function that takes no parameters then f is a term (standing for a value in U).
3. If f is a function that takes $n>0$ parameters and t_{1}, \ldots, t_{n} are terms then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.

For example, $\operatorname{sum}(\operatorname{sum}(x, y), \operatorname{successor}(z))$ is a term. (What is its value if $x=2, y=5$ and $z=20$?)
The meaning of a term should be clear, provided the values of variables are known. Term $\operatorname{sum}(x, y)$ stands for the result that function sum yields on parameters (x, y) (the sum of x and y).

2.3 First-order formulas

Definition 2.3. A first-order formula is defined as follows.

1. \mathbf{T} and \mathbf{F} are first-order formulas.
2. If P is a predicates that takes no parameters then P is a first-order formula.
3. If t_{1}, \ldots, t_{n} are terms and P is a predicate that takes $n>0$ parameters, then $P\left(t_{1}, \ldots, t_{n}\right)$ is a first-order formula. It is true if $P\left(v_{1}, \ldots, v_{n}\right)$ is true, where v_{1} is the value of term t_{1}, v_{2} is the value of term t_{2}, etc.
4. If t_{1} and t_{2} are terms then $t_{1}=t_{2}$ is a first-order formula. (It is true if terms t_{1} and t_{2} have the same value.)
5. If A and B are first-order formulas and x is a variable then each of the following is a first-order formula.
(a) (A)
(b) $\neg A$
(c) $A \vee B$
(d) $A \wedge B$
(e) $\forall x A$
(f) $\exists x A$

The meaning of parentheses, $\mathbf{T}, \mathbf{F}, \neg, \vee$ and \wedge are the same as in propositional logic. Symbols \forall and \exists are called quantifiers. You read $\forall x$ as "for all x, and $\exists x$ as "for some x " or "there exists an x ". They have the following meanings.

1. $\forall x A$ is true of A is true for all values of x in U.
2. $\exists x A$ is true if A is true for at least one value of x in U.

By convention, quantifiers have higher precedence than all of the operators \wedge, \vee, etc.

Examples of first-order formulas are:

1. $P(\operatorname{sum}(x, y))$ says that, if $v=\operatorname{sum}(x, y)$, then $P(v)$ is true. Its value (true or false) depends on the meanings of predicate P and function sum, as well as on the values of variables x and y.
2. $\forall x(\operatorname{greater}(x, x))$ says that $\operatorname{greater}(x, x)$ is true for every value x in U. Using the meaning of greater (a, b) given above, $\forall x(\operatorname{greater}(x, x))$ is clearly false, since no x can be greater than itself.
3. $\neg \forall x$ (greater $(x, x))$ says that $\forall x$ (greater $(x, x))$ is false. That is true.
4. $\exists y(y=\operatorname{sum}(y, y))$ says that there exists a value y where $y=y+y$. That is true since $0=0+0$.
5. $\forall x(\exists y(\operatorname{greater}(y, x)))$ says that, for every value v of x, first-order formula $\exists y$ (greater $(y, v))$ is true. That is true. If $v=100$, then choose $y=101$, which is larger than 100. If $v=1000$, choose $y=1001$. If $v=1,000,000$, choose $y=1,000,001$.
6. $\exists y(\forall x(\operatorname{greater}(y, x)))$ says that there exists a value v of y so that $\forall x$ (greater $(v, x))$. That is false. There is no single value v that is larger than every integer x.

Operators $\rightarrow, \leftrightarrow$ and \equiv have the same meanings in first-order logic as in propositional logic.

2.4 Sentences

Example 1 above uses variable x and y, and its value cannot be determined without knowing the values of x and y. It only makes sense if the values of x and y have already been specified. Think of them as similar to global variables in a function definition in a computer program.

The other examples above do not depend on any variable values. They manage their own variables, and are similar to a function definition that only uses local variables.
We say that variable x is bound if it occurs inside A in a first-order formula of the form $\forall x A$ or $\exists x A$.

Definition 2.4. A first-order formula is a sentence if all of its variables are bound.

Table 2-1. Some valid equivalences

$\exists x P(x) \vee \neg \exists x P(x)$
$\forall x P(x) \wedge \exists y Q(y) \equiv \exists y Q(y) \wedge \forall x P(x)$
$\neg(\forall x A) \equiv \exists x(\neg A)$
$\neg(\exists x A) \equiv \forall x(\neg A)$
$\forall x(A \wedge B) \equiv \forall x A \wedge \forall x B$
$\forall x A \rightarrow \exists x A$

2.5 Validity

Recall that a propositional formula is valid if it is true for all values of the variables that it contains. There is a similar concept of validity for first-order formulas.

Definition 2.5. Suppose that S is a sentence of first-order logic. (That is, it does not contain any unbound variables.) We say that S is valid if it is true regardless of the domain of discourse and the meanings of the predicates and functions that it mentions.

One way to get a valid first-order formula is to substitute first-order formulas into a propositional tautology. The following table lists two valid first-order formulas found in that way. Table 2-1 lists a few valid first-order equivalences, the first two of which are examples of substituting a first-order formula into a propositional equivalence.

2.6 Notation

First-order logic notation is usually extended to include common mathematical notation. For example, we write $x>y$ rather than $\operatorname{greater}(x, y)$, and $x+y$ rather than $\operatorname{sum}(x, y)$. Constants such as 0,1 and 200 are also usually allowed. Instead of writing even (x), we write " x is even". For example,

$$
\forall x(x \text { is even } \wedge y \text { is even } \rightarrow x+y \text { is even })
$$

is true. Those notational changes make first-order logic more readable. prev next

