prev

4 Sets

4.1 Sets

Definition 4.1. A set is an unordered collection of things without repetitions. The things in set S are called the *members* of S.

Definition 4.2. A *set enumeration* is one way to describe a set, by writing the members of the set in braces, separated by commas. For example, $\{2, 5, 9\}$ is a set of three integers.

4.1.1 Finite and infinite sets

It is possible to list the members of a *finite* set. But some sets, such as the set of all positive integers, have infinitely many members. Here are a few common infinite sets.

\mathcal{N}	$\{0, 1, 2, 3, \dots\}$
\mathcal{Z}	$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
\mathcal{R}	the set of all real numbers

4.1.2 Set comprehensions

A *set comprehension* is a way to describe the set of all values that have a certain property. Notation

 $\{x \mid p(x)\}$

stands for the set of all values x such that p(x) is true and notation

 $\{f(x) \mid p(x)\}$

stands for the set of all values f(x) such that p(x) is true. Notation

 $\{x \in S \mid p(x)\}$

is shorthand for $\{x \mid x \in S \land p(x)\}$ Here are some examples.

Set	Description
$\left\{ x \mid x \in \mathcal{R} \land x^2 - 2x + 1 = 0 \right\}$	$\{-1, 1\}$
$\{x \in \mathcal{R} \mid x^2 - 2x + 1 = 0\}$	$\{-1, 1\}$
$\begin{cases} x \mid x \text{ is an even positive integer} \end{cases}$	$\{2, 4, 6, \ldots\}$
$x^2 \mid x \text{ is an even positive integer}$	$\{4, 16, 36, \ldots\}$

4.1.3 Set notation and operations

Table 4-1 defines notation for sets.

4.1.4 Identities for sets

Table 4-2 list some identities are easy to establish.

4.1.5 Sets of sets

The members of sets can be sets. For example, if $S = \{\{1, 2, 3\}, \{2, 4, 6\}\}$ then |S| = 2, since S has exactly two members, $\{1, 2, 3\}$ and $\{2, 4, 6\}$.

Do not confuse \in with \subseteq . If $S = \{\{1, 2, 3\}, \{2, 4, 6\}\}$ then

```
 \begin{aligned} \{1,2,3\} \in S \\ \{1,2,3\} \not\subseteq S \\ 3 \not\in S \end{aligned}
```

Notice that $\{\} \neq \{\{\}\}$. $|\{\}| = 0$ but $|\{\{\}\}| = 1$ since $\{\{\}\}$ has one member, the empty set.

prev

Table 4-1		
Notation	Meaning	
S	S is the <i>cardinality</i> (size) of S, when S is a finite set.	
{}	{} is the empty set, which has no members	
$x \in S$	$x \in S$ is true if x is a member of set $S.$ For example, $2 \in \{1,2,3,4\}$	
$x\not\in S$	$x \notin S$ is equivalent to $\neg(x \in S)$	
$S \cup T$	$S \cup T = \{x \mid x \in S \lor x \in T\}$. For example, $\{2, 5, 6\} \cup \{2, 3, 7\} = \{2, 3, 5, 6, 7\}$. This is called the <i>union</i> of sets S and T.	
$S \cap T$	$S \cap T = \{x \mid x \in S \land x \in T\}$. For example, $\{2, 5, 6\} \cup \{2, 3, 7\} = \{2\}$. This is called the <i>intersection</i> of sets S and T.	
S-T	$S - T = \{x \mid x \in S \land x \notin T\}.$ For example, $\{2, 5, 6\} - \{2, 3, 7\} = \{5, 6\}.$ This is called the <i>difference</i> of sets S and T.	
\overline{S}	$\overline{S} = U - S$, where U is the domain of discourse. This is called the <i>complement</i> of S.	
$S \times T$	$S \times T = \{(x, y) \mid x \in S \land y \in T\}$. For example, $\{2, 3\} \times \{5, 6\}$ = $\{(2,5), (2,6), (3,5), (3,6)\}$. This is called the <i>cartesian</i> <i>product</i> of S and T.	
$S \subseteq T$	$S \subseteq T$ is true if $\forall x (x \in S \to x \in T)$. For example, $\{2, 4, 6\} \subseteq \{1, 2, 3, 4, 5, 6\}$. Notice that $\{2, 4, 6\} \subseteq \{2, 4, 6\}$. $S \subseteq T$ is read "S is a subset of T."	
S = T	Sets S and T are equal if $S \subseteq T$ and $T \subseteq S$. That is, S and T have exactly the same members.	

Table 4-2		
Some Set Identities		
$A \cup \{\} = A$		
$A \cap \{\} = \{\}$		
$\overline{\overline{A}} = A$		
$A \cup B = B \cup A$		
$A \cap B = B \cap A$		
$A \cup (B \cup C) = (A \cup B) \cup C$		
$A \cap (B \cap C) = (A \cap B) \cap C$		
$\overline{A \cup B} = \overline{A} \cap \overline{B}$		
$\overline{A \cap B} = \overline{A} \cup \overline{B}$		
$A - B = A \cap \overline{B}.$		
$A \cup (A \cap B) = A$		
$A \cap (A \cup B) = A$		