prev

4 Sets

4.1 Sets

Definition 4.1. A set is an unordered collection of things without repetitions. The things in set S are called the members of S.

Definition 4.2. A set enumeration is one way to describe a set, by writing the members of the set in braces, separated by commas. For example, $\{2,5$, $9\}$ is a set of three integers.

4.1.1 Finite and infinite sets

It is possible to list the members of a finite set. But some sets, such as the set of all positive integers, have infinitely many members. Here are a few common infinite sets.

\mathcal{N}	$\{0,1,2,3, \ldots\}$
\mathcal{Z}	$\{\ldots,-2,-1,0,1,2, \ldots\}$
\mathcal{R}	the set of all real numbers

4.1.2 Set comprehensions

A set comprehension is a way to describe the set of all values that have a certain property. Notation

$$
\{x \mid p(x)\}
$$

stands for the set of all values x such that $p(x)$ is true and notation

$$
\{f(x) \mid p(x)\}
$$

stands for the set of all values $f(x)$ such that $p(x)$ is true. Notation

$$
\{x \in S \mid p(x)\}
$$

is shorthand for $\{x \mid x \in S \wedge p(x)\}$ Here are some examples.

Set	Description
$\left\{x \mid x \in \mathcal{R} \wedge x^{2}-2 x+1=0\right\}$	$\{-1,1\}$
$\left\{x \in \mathcal{R} \mid x^{2}-2 x+1=0\right\}$	$\{-1,1\}$
$\{x \mid x$ is an even positive integer $\}$	$\{2,4,6, \ldots\}$
$\left\{x^{2} \mid x\right.$ is an even positive integer $\}$	$\{4,16,36, \ldots\}$

4.1.3 Set notation and operations

Table 4-1 defines notation for sets.

4.1.4 Identities for sets

Table 4-2 list some identities are easy to establish.

4.1.5 Sets of sets

The members of sets can be sets. For example, if $S=\{\{1,2,3\},\{2,4,6\}\}$ then $|S|=2$, since S has exactly two members, $\{1,2,3\}$ and $\{2,4,6\}$.

Do not confuse \in with \subseteq. If $S=\{\{1,2,3\},\{2,4,6\}\}$ then

$$
\{1,2,3\} \in S
$$

$\{1,2,3\} \nsubseteq S$
$3 \notin S$
Notice that $\} \neq\{\{ \}\} .|\{ \}|=0$ but $|\{\}\} \mid=1$ since $\{\}\}$ has one member, the empty set.

prev

Table 4-1	
Notation	Meaning
$\|S\|$	$\|S\|$ is the cardinality (size) of S, when S is a finite set.
$\}$	$\}$ is the empty set, which has no members
$x \in S$	$x \in S$ is true if x is a member of set S. For example, $2 \in$ $\{1,2,3,4\}$
$x \notin S$	$x \notin S$ is equivalent to $\neg(x \in S)$
$S \cup T$	$S \cup T=\{x \mid x \in S \vee x \in T\}$. For example, $\{2,5,6\} \cup\{2,3$, $7\}=\{2,3,5,6,7\}$. This is called the union of sets S and T.
$S \cap T$	$S \cap T=\{x \mid x \in S \wedge x \in T\}$. For example, $\{2,5,6\} \cup\{2,3$, $7\}=\{2\}$. This is called the intersection of sets S and T.
$S-T$	$S-T=\{x \mid x \in S \wedge x \notin T\}$. For example, $\{2,5,6\}-\{2,3$, $7\}=\{5,6\}$. This is called the difference of sets S and T.
\bar{S}	$\bar{S}=U-S$, where U is the domain of discourse. This is called the complement of S.
$S \times T$	$S \times T=\{(x, y) \mid x \in S \wedge y \in T\}$. For example, $\{2,3\} \times\{5,6\}$ $=\{(2,5),(2,6),(3,5),(3,6)\}$. This is called the cartesian $p r o d u c t$ of S and T.
$S \subseteq T$	$S \subseteq T$ is true if $\forall x(x \in S \rightarrow x \in T)$. For example, $\{2,4,6\}$ $\subseteq\{1,2,3,4,5,6\}$. Notice that $\{2,4,6\} \subseteq\{2,4,6\} . S \subseteq T$ is read " S is a subset of $T . "$
$S=T$	Sets S and T are equal if $S \subseteq T$ and $T \subseteq S$. That is, S and T have exactly the same members.

Table 4-2
Some Set Identities
$A \cup\}=A$
$A \cap\}=\{ \}$
$\overline{\bar{A}}=A$
$A \cup B=B \cup A$
$A \cap B=B \cap A$
$A \cup(B \cup C)=(A \cup B) \cup C$
$A \cap(B \cap C)=(A \cap B) \cap C$
$\overline{A \cup B}=\bar{A} \cap \bar{B}$
$\overline{A \cap B}=\bar{A} \cup \bar{B}$
$A-B=A \cap \bar{B}$.
$A \cup(A \cap B)=A$
$A \cap(A \cup B)=A$

