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Discrete Log Problem (DLP)

Let G be a cyclic group of prime order p and
let g be a generator of G.

Given β ∈ G, the discrete logarithm problem
is to determine α such that gα = β.

The presumed computational difficulty of
solving the DLP in appropriate groups is the
basis of many cryptosystems and protocols.

The primary reason for the popularity of ECC
over RSA is that there are currently no known
subexponential algorithms to solve the DLP in
groups used in ECC.
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Generic Groups

“Generic Group” refers to a group whose
structure we do not know.

It is presented in the form of a “Black Box”.

Each group element has a unique encoding.

Given the encoding of two elements g and h
of the group, the black box can

produce g · h, in unit time.
decide whether g = h, in unit time.
compute any given power of g
(including g−1), in time O(log p).
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Algorithms for DLP in
Generic Groups

Baby-step Rho Kangaroo∗

Giant-step
Shanks Pollard Pollard

Deterministic Probabilistic Probabilistic
Time O(

√
p) O(

√
p) O(

√
b − a)

Space O(
√

p) O(1) O(1)

∗Assumes that DL is known to lie in the interval [a, b]
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Lower Bounds

Victor Shoup has established a lower bound
of Ω(

√
p) for any probabilistic algorithm that

can solve the DLP for generic groups.

Hence the Baby-step Giant-step method and
the rho method are optimal algorithms to
solve the DLP and cannot be improved
further (except possibly by a constant factor).

The reason for the popularity of the ECC is
that the only known algorithms to solve the
DLP over elliptic curve groups are the generic
algorithms.
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Side Channel Attacks

“Side Channel Attacks” focus on the
implementation of an algorithm rather than
the specification to break a cryptosystem.

By observing the implementation being
executed, the attacker can make correlations
between the events that occur in the
processor and the data being processed.

Famous examples include Timing based
attacks and Power Analysis based attacks.
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Problem Considered

We assume that some partial information
about the secret key is revealed by side
channel attacks.

We can certainly ignore the extra information
and use a generic algorithm of complexity
O(

√
p) to break the system.

We can do an exhaustive search using the
extra information to break the system.

Can we do something in between? In other
words, can we use the partial information
intelligently to break the system?
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Nature of Partial Information

We consider two different scenarios based on
the nature of partial information revealed.

In the first scenario, we assume that a
sequence of contiguous bits of the key is
revealed.

In the second scenario, we assume that
incomplete information about the
“Square and Multiply Chain” (used to
efficiently exponentiate) is revealed.
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Contiguous bits are known

The goal is to come up with an algorithm whose
complexity will be square root of the size of the
remaining key space (and thus optimal)
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Contiguous bits are known

The goal is to come up with an algorithm whose
complexity will be square root of the size of the
remaining key space (and thus optimal)

Left Part is Known Can simply use Kangaroo
Algorithm.

Right Part is Known Can be solved in optimal time
as shown by Teske.

Middle Part is Known Has not been studied in the
Literature.
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Middle Part is Known

Assume that we know M and N such that

α = α1MN + α2M + α3

where 0 ≤ α2 < N is known and with
0 ≤ α3 < M .

Suppose, we are given an integer r,
0 < r < p, such that we can write rMN as
kp + s with |s| < p/2. Then,

rα = rα1MN + rα2M + rα3

= α1kp + sα1 + rα2M + rα3

= α1kp + rα2M + α′
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Reducing to Kangaroo
Algorithm

gαr = gα1kp+rα2M+α′

(gα)r = (gp)α1k grα2Mgα′

βr = grα2Mgα′
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Reducing to Kangaroo
Algorithm

gαr = gα1kp+rα2M+α′

(gα)r = (gp)α1k grα2Mgα′

βr = grα2Mgα′

Denoting
(

β × g−α2M
)r by β ′, the above

equation can be written in the form β ′ = gα′.

Note that β ′ can be computed from β as r, α2,
and M are known.

Invoke Kangaroo Algorithm to compute α
′.
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Bounding Interval Size

When s is positive, α′ = α3r + α1s must be in
the interval

[

0, r(M − 1) + s
( p

MN
− 1

)]

Similary, if s is negative, α′ must be in the
interval

[

s
( p

MN
− 1

)

, r(M − 1)
]

In both cases we can restrict the value of α′ to
an interval of length rM + |s| p

MN .
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Minimizing Interval Size

We want to select the parameters r and s
such that the interval size is minimized.

We can do so, by using Dirichlet’s Theorem
on rational approximations.

We can guarantee that the size of the interval
is at most O(2p/

√
N).

So, the time complexity of the overall
algorithm will be O(

√
2p1/2

/

N 1/4).
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Remarks

Once α′ is known, we can solve the easy
diophantine equation α′ = rα3 + sα1 and
extract α1 and α3.

Together with the known middle part α2, we
get the discrete log α.

The complexity that we are able to get is not
quite optimal in the general case.

However, if p is Mersenne prime (or if p is
sufficiently close to 2l), we are able to get
optimal complexity.
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Square and Multiply
Algorithm

For example, to compute g43

Write 43 in binary as 101011.

Replace each 0 by S (Square) and 1 by SM
(Square and Multiply) to get SMSSMSSMSM.

Start with h = 1 and do the operations
(Squaring h and Multiplying h by g) specified
by the above string from left to right, storing
the result back in h each time.

1 → 1 → g → g2 → g4 → g5 → g10 → g20 →
g21 → g42 → g43
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Assumptions

In the second scenario, we assume that
(incomplete) information about the “Square
and Multiply Chain” is revealed by the side
channel attacks. Specifically, we assume that

the total length n of the square and multiply
chain is known.
the number m of M ’s is known.
Exact positions of m − i of the M ’s are
known.

The problem is to utilize the partial
information and figure out the entire chain.
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Observations

We need to figure out the exact positions of
the remaining i M ’s. Then, the entire chain is
determined.

We can do an exhaustive search in time
O(ni). Guess the positions of the i M ’s and
then check whether the guess is right.

We can make use of the fact that every M
should be preceded and followed by a S. But,
this will not affect the asymptotics.
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A solution using an
additional assumption

Suppose that somehow we can split the chain
into two parts such that i/2 M’s are on the left
part and the remaining i/2 M’s are on the
right part.

β = gα = ga2x+b

=
(

g2x)a
gb

If we denote g−2x by h, then the above
equation reduces to

β−1 × gb = ha
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Algorithm

Make a guess a for the left part.

Compute ha.

Record the pair (a, ha) in a table.

Repeat the above for each possible guess a.

Sort the table based on second column.

Space Complexity is O(ni/2) ignoring
logarithmic terms.
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Algorithm - Contd.

Make a guess b for the right part.

Compute y = β−1 × gb.

Check if y is in the second column of some
row of the table.

If so, the guess is correct, and the
corresponding a is in the first column.

If not, the guess is wrong and we make
another guess for b until we succeed.

Time Complexity is O(ni/2) ignoring
logarithmic terms.
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Getting rid of the
assumption

We don’t really need the additional
assumption.

There are only O(n) ways of dividing the
chain into two parts.

One of them must have the property that i/2
M’s are in each part. So, we try each way of
splitting the chain, one position at a time.

The overall complexity of the algorithm will be
O(n1+b i

2
c).
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Conclusion and Open
Problems

Under two different scenarios of partial
information we have better algorithms to find
the discrete log.

At present, we don’t know how to solve the
discrete log problem efficiently when the bits
revealed are not in contiguous postions.

Sometimes, one uses the NAF
(Non-adjacent Form) representation to do the
exponentiation. If we know partial information
about the NAF we don’t know how to solve
the discrete log problem efficiently.
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