

Applications of Orthogonal Arrays to Computer Science

K. Gopalakrishnan

D. R. Stinson

East Carolina University

AND University of Waterloo

Greenville, NC, USA

Waterloo, ON, Canada

ICDM'06 Indian Institute of Science 17th Dec. 2006

• An orthogonal array $OA_{\lambda}(t, k, v)$ is a $\lambda v^t \times k$ array of symbols from a *v*-set, such that in any *t* columns, every possible list of *t* symbols occurs in exactly λ rows.

- An orthogonal array $OA_{\lambda}(t, k, v)$ is a $\lambda v^t \times k$ array of symbols from a *v*-set, such that in any *t* columns, every possible list of *t* symbols occurs in exactly λ rows.
- An OA is simple if every row is distinct.

- An orthogonal array $OA_{\lambda}(t, k, v)$ is a $\lambda v^t \times k$ array of symbols from a *v*-set, such that in any *t* columns, every possible list of *t* symbols occurs in exactly λ rows.
- An OA is simple if every row is distinct.
- If $\lambda = 1$, we simply denote it by OA(t, k, v).

- An orthogonal array $OA_{\lambda}(t, k, v)$ is a $\lambda v^t \times k$ array of symbols from a *v*-set, such that in any *t* columns, every possible list of *t* symbols occurs in exactly λ rows.
- An OA is simple if every row is distinct.
- If $\lambda = 1$, we simply denote it by OA(t, k, v).
- If v = 2, then these are called *binary* orthogonal arrays.

Here is a simple OA(3, 4, 2).

ICDM'06—Applications of OAs to CS - p.3

• For what parameters t, k, v and λ , do they exist?

- For what parameters t, k, v and λ , do they exist?
- How to construct them?

- For what parameters t, k, v and λ , do they exist?
- How to construct them?
- Given t, k, v, determine the smallest λ for which an $OA_{\lambda}(t, k, v)$ exists.

- For what parameters t, k, v and λ , do they exist?
- How to construct them?
- Given t, k, v, determine the smallest λ for which an $OA_{\lambda}(t, k, v)$ exists.
- For basic theory of OAs, see the recent book on Orthogonal Arrays by Hedayat, Sloane and Stuffken.

- For what parameters t, k, v and λ , do they exist?
- How to construct them?
- Given t, k, v, determine the smallest λ for which an $OA_{\lambda}(t, k, v)$ exists.
- For basic theory of OAs, see the recent book on Orthogonal Arrays by Hedayat, Sloane and Stuffken.
- Here we will focus on Applications of OAs to Computer Science.

Threshold Schemes

- Threshold Schemes
- Authentication Codes

- Threshold Schemes
- Authentication Codes
- Derandomization of Algorithms

- Threshold Schemes
- Authentication Codes
- Derandomization of Algorithms
- Random Pattern Testing of VLSI Chips

- Threshold Schemes
- Authentication Codes
- Derandomization of Algorithms
- Random Pattern Testing of VLSI Chips
- Universal Hash Functions

- Threshold Schemes
- Authentication Codes
- Derandomization of Algorithms
- Random Pattern Testing of VLSI Chips
- Universal Hash Functions
- Perfect Local Randomizers

- Threshold Schemes
- Authentication Codes
- Derandomization of Algorithms
- Random Pattern Testing of VLSI Chips
- Universal Hash Functions
- Perfect Local Randomizers
- and many more.

Threshold Schemes

A method of sharing a secret among a set of *n* participants so that only groups of participants of size at least *t* could gain access to the secret.

Threshold Schemes

- A method of sharing a secret among a set of *n* participants so that only groups of participants of size at least *t* could gain access to the secret.
- Let \mathcal{P} be a set of n participants, say $P_1, P_2, \ldots P_n$.

Threshold Schemes

- A method of sharing a secret among a set of *n* participants so that only groups of participants of size at least *t* could gain access to the secret.
- Let \mathcal{P} be a set of n participants, say $P_1, P_2, \ldots P_n$.
- Let ${\mathcal K}$ be the set of possible values of the secret.

The Model

• A particular secret $K \in \mathcal{K}$ is chosen by a special participant called the *dealer*, D.

The Model

- A particular secret $K \in \mathcal{K}$ is chosen by a special participant called the *dealer*, D.
- When D wants to share the secret K among the participants in P, he gives each participant some partial information called a share.

The Model

- A particular secret $K \in \mathcal{K}$ is chosen by a special participant called the *dealer*, D.
- When D wants to share the secret K among the participants in P, he gives each participant some partial information called a share.
- The shares should be distributed secretly. Let \mathcal{S} be the set of possible values of the shares.

Perfect Threshold Schemes

We call such a method of sharing a secret a perfect (t, n) threshold scheme, if the following two properties are satisfied.

Perfect Threshold Schemes

- We call such a method of sharing a secret a perfect (t, n) threshold scheme, if the following two properties are satisfied.
 - 1. If a subset of participants $B \subseteq \mathcal{P}$ pool their shares, then they can determine the value of *K* provided $|B| \ge t$.

Perfect Threshold Schemes

- We call such a method of sharing a secret a perfect (t, n) threshold scheme, if the following two properties are satisfied.
 - 1. If a subset of participants $B \subseteq \mathcal{P}$ pool their shares, then they can determine the value of *K* provided $|B| \ge t$.
 - 2. On the other hand, if |B| < t, then they should be able to determine nothing about the value of K.

Ideal Threshold Schemes

 It is important to minimize the information (share size) a participant is expected to remember for security purposes.

Ideal Threshold Schemes

- It is important to minimize the information (share size) a participant is expected to remember for security purposes.
- It is not too difficult to see that in any perfect thresold scheme $|S| \ge |\mathcal{K}|$.

Ideal Threshold Schemes

- It is important to minimize the information (share size) a participant is expected to remember for security purposes.
- It is not too difficult to see that in any perfect thresold scheme $|S| \ge |\mathcal{K}|$.
- A perfect thresold scheme in which $|S| = |\mathcal{K}|$, is called an *ideal threshold schemes*.

Relation to OAs

• Theorem: An ideal (t, n) threshold scheme with $|\mathcal{K}| = v$ exists if and only if an OA(t, n + 1, v) exists.

Relation to OAs

- Theorem: An ideal (t, n) threshold scheme with $|\mathcal{K}| = v$ exists if and only if an OA(t, n + 1, v) exists.
 - First observed by Keith Martin

Relation to OAs

- Theorem: An ideal (t, n) threshold scheme with $|\mathcal{K}| = v$ exists if and only if an OA(t, n + 1, v) exists.
 - First observed by Keith Martin
 - Also, independently by Dawson et. al.

Relation to OAs

- Theorem: An ideal (t, n) threshold scheme with $|\mathcal{K}| = v$ exists if and only if an OA(t, n + 1, v) exists.
 - First observed by Keith Martin
 - Also, independently by Dawson et. al.
 - Fairly simple; we shall prove half of it.

• Start with OA(t, n + 1, v).

- Start with OA(t, n + 1, v).
- First column corresponds to dealer.

- Start with OA(t, n+1, v).
- First column corresponds to dealer.
- Remaining columns correspond to the participants.

- Start with OA(t, n+1, v).
- First column corresponds to dealer.
- Remaining columns correspond to the participants.
- To distribute a specific key K, dealer selects a random row of OA such that K appears in the first column.

- Start with OA(t, n+1, v).
- First column corresponds to dealer.
- Remaining columns correspond to the participants.
- To distribute a specific key K, dealer selects a random row of OA such that K appears in the first column.
- Dealer gives out remaining elements of the row as shares to the participants.

When t participants pool their shares, their collective information determines a unique row of the OA. So, they can figure out K as the first element in the row.

- When t participants pool their shares, their collective information determines a unique row of the OA. So, they can figure out K as the first element in the row.
- Can a group of t 1 participants compute K?

- When t participants pool their shares, their collective information determines a unique row of the OA. So, they can figure out K as the first element in the row.
- Can a group of t 1 participants compute K?
- Any possible value of secret along with shares of t-1 participants determine a unique row of the OA.

- When t participants pool their shares, their collective information determines a unique row of the OA. So, they can figure out K as the first element in the row.
- Can a group of t 1 participants compute K?
- Any possible value of secret along with shares of t-1 participants determine a unique row of the OA.
- Hence, t 1 participants can get no information about the secret.

Alice wants to communicate to Bob over a public channel.

- Alice wants to communicate to Bob over a public channel.
- Oscar, the bad guy, can introduce and/or modify messages in the channel.

- Alice wants to communicate to Bob over a public channel.
- Oscar, the bad guy, can introduce and/or modify messages in the channel.
- The purpose is to protect the *integrity* of the information (and not to provide *secrecy*).

- Alice wants to communicate to Bob over a public channel.
- Oscar, the bad guy, can introduce and/or modify messages in the channel.
- The purpose is to protect the *integrity* of the information (and not to provide *secrecy*).
- When Bob receives a message from Alice, How can he be sure that the message was really sent by Alice and is not tampered with along the way?

• An Authentication Code is a four-tuple $(\mathcal{S}, \mathcal{A}, \mathcal{K}, \mathcal{E})$, where

- An Authentication Code is a four-tuple $(\mathcal{S}, \mathcal{A}, \mathcal{K}, \mathcal{E})$, where
 - 1. S is a finite set of *source states*. Let |S| = k.

- An Authentication Code is a four-tuple $(\mathcal{S}, \mathcal{A}, \mathcal{K}, \mathcal{E})$, where
 - 1. S is a finite set of *source states*. Let |S| = k.
 - 2. \mathcal{A} is a finite set of *authenticators*. Let $|\mathcal{A}| = l$.

- An Authentication Code is a four-tuple $(\mathcal{S}, \mathcal{A}, \mathcal{K}, \mathcal{E})$, where
 - 1. S is a finite set of *source states*. Let |S| = k.
 - 2. \mathcal{A} is a finite set of *authenticators*. Let $|\mathcal{A}| = l$.
 - 3. \mathcal{K} is a finite set of *keys*.

- An Authentication Code is a four-tuple $(\mathcal{S}, \mathcal{A}, \mathcal{K}, \mathcal{E})$, where
 - 1. S is a finite set of *source states*. Let |S| = k.
 - 2. \mathcal{A} is a finite set of *authenticators*. Let $|\mathcal{A}| = l$.
 - 3. \mathcal{K} is a finite set of *keys*.
 - 4. For each $K \in \mathcal{K}$, there is an *authentication rule* $e_k \in \mathcal{E}$. Each $e_K : \mathcal{S} \to \mathcal{A}$.

• Alice and Bob jointly choose a secret key $K \in \mathcal{K}$.

- Alice and Bob jointly choose a secret key $K \in \mathcal{K}$.
- Suppose Alice wants to send $s \in S$.

- Alice and Bob jointly choose a secret key $K \in \mathcal{K}$.
- Suppose Alice wants to send $s \in S$.
- Alice uses authentication rule e_K to produce the authenticator $a = e_K(s)$.

- Alice and Bob jointly choose a secret key $K \in \mathcal{K}$.
- Suppose Alice wants to send $s \in S$.
- Alice uses authentication rule e_K to produce the authenticator $a = e_K(s)$.
- Alice sends the message m = (s, a) over the channel.

- Alice and Bob jointly choose a secret key $K \in \mathcal{K}$.
- Suppose Alice wants to send $s \in S$.
- Alice uses authentication rule e_K to produce the authenticator $a = e_K(s)$.
- Alice sends the message m = (s, a) over the channel.
- When Bob receives m, he checks that $a = e_K(s)$ to authenticate.

• An authentication code can be represented by an $|\mathcal{E}| \times |\mathcal{S}|$ authentication matrix, where

- An authentication code can be represented by an $|\mathcal{E}| \times |\mathcal{S}|$ authentication matrix, where
 - the rows are indexed by authentication rules

- An authentication code can be represented by an $|\mathcal{E}| \times |\mathcal{S}|$ authentication matrix, where
 - the rows are indexed by authentication rules
 - the columns are indexed by source states

- An authentication code can be represented by an $|\mathcal{E}| \times |\mathcal{S}|$ authentication matrix, where
 - the rows are indexed by authentication rules
 - the columns are indexed by source states
 - the entry in row e and column s is e(s).

• When Oscar places a new message m = (s, a) in the channel, it is called *impersonation*.

- When Oscar places a new message m = (s, a) in the channel, it is called *impersonation*.
- Let P_{d_0} be the probability of successfully impersonating.

- When Oscar places a new message m = (s, a) in the channel, it is called *impersonation*.
- Let P_{d_0} be the probability of successfully impersonating.
- When Oscar sees a message m and changes it to a message $m' \neq m$, this is called substitution.

- When Oscar places a new message m = (s, a) in the channel, it is called *impersonation*.
- Let P_{d_0} be the probability of successfully impersonating.
- When Oscar sees a message m and changes it to a message $m' \neq m$, this is called substitution.
- Let P_{d_1} be the probability of successully substituting.

Authentication Codes -Goals

 When designing a good authentication code, we want to

Authentication Codes -Goals

- When designing a good authentication code, we want to
 - Minimize P_{d_0} .

Authentication Codes -Goals

- When designing a good authentication code, we want to
 - Minimize P_{d_0} .
 - Minimize P_{d_1} .

Authentication Codes -Goals

- When designing a good authentication code, we want to
 - Minimize P_{d_0} .
 - Minimize P_{d_1} .
 - Also, minimize the number of authentication rules.

Authentication Codes -Goals

- When designing a good authentication code, we want to
 - Minimize P_{d_0} .
 - Minimize P_{d_1} .
 - Also, minimize the number of authentication rules.
- It is not too difficult to show that $P_{d_0} \ge 1/l$ and $P_{d_1} \ge 1/l$, where l is the number of authenticators.

Connection to OAs

• Theorem: Suppose we have an authentication code for k source states and having l authenticators, in which $P_{d_0} = P_{d_1} = 1/l$. Then

Connection to OAs

- Theorem: Suppose we have an authentication code for k source states and having l authenticators, in which $P_{d_0} = P_{d_1} = 1/l$. Then
 - 1. $|\mathcal{E}| \ge l^2$, and equality occurs if and only if the authentication matrix is an orthogonal array OA(2, k, l) (with $\lambda = 1$)

Connection to OAs

- Theorem: Suppose we have an authentication code for k source states and having l authenticators, in which $P_{d_0} = P_{d_1} = 1/l$. Then
 - 1. $|\mathcal{E}| \ge l^2$, and equality occurs if and only if the authentication matrix is an orthogonal array OA(2, k, l) (with $\lambda = 1$)
 - 2. $|\mathcal{E}| \ge k(l-1) + 1$, and equality occurs if and only if the authentication matrix is an $OA_{\lambda}(2, k, l)$ where

$$\lambda = \frac{k(l-1)+1}{l^2}.$$

Suppose, we use OA(2, k, l) as the authentication matrix. Then, it is easy to see that

- Suppose, we use OA(2, k, l) as the authentication matrix. Then, it is easy to see that
 - Number of authentication rules is l^2 .

- Suppose, we use OA(2, k, l) as the authentication matrix. Then, it is easy to see that
 - Number of authentication rules is l^2 .
 - $P_{d_0} = 1/l$ as in each column each authenticator appears exactly l times.

- Suppose, we use OA(2, k, l) as the authentication matrix. Then, it is easy to see that
 - Number of authentication rules is l^2 .
 - $P_{d_0} = 1/l$ as in each column each authenticator appears exactly l times.
 - $P_{d_1} = 1/l$ as any ordered pair of authenticators appears exactly once in any two selected columns.

Illustration

4 states, 3 authenticators, 9 encoding rules.

s_1	s_2	S_3	s_4
1	1	1	1
1	2	2	2
1	3	3	3
2	1	2	3
2	2	3	1
2	3	1	2
3	1	3	2
3	2	1	3
3	3	2	1

ICDM'06—Applications of OAs to CS - p.2

Illustration

Suppose $(s_2, 3)$ is observed by Oscar.

Illustration

Suppose Oscar wants to substitute s_4 .

ICDM'06—Applications of OAs to CS - p.2

Probabilistic Algorithms

A probabilistic algorithm will be using random bits during the course of its execution unlike a deterministic algorithm. There are two types.

Probabilistic Algorithms

A probabilistic algorithm will be using random bits during the course of its execution unlike a deterministic algorithm. There are two types.

Las Vegas algorithm may fail to give an answer with probability ϵ , but if it does give an answer, it is correct.

Probabilistic Algorithms

A probabilistic algorithm will be using random bits during the course of its execution unlike a deterministic algorithm. There are two types.

Las Vegas algorithm may fail to give an answer with probability ϵ , but if it does give an answer, it is correct.

Monte Carlo algorithm always gives an answer, but the answer may be incorrect with some probability ϵ .

Applied to decision problems

- Applied to decision problems
- Input: x

- Applied to decision problems
- Input: x
- Question: Is $x \in L$?

- Applied to decision problems
- Input: x
- Question: Is $x \in L$?
- A sample point $r \in \{0, 1, \dots, n-1\}$ is chosen

- Applied to decision problems
- Input: x
- Question: Is $x \in L$?
- A sample point $r \in \{0, 1, \dots, n-1\}$ is chosen
- A 0-1 valued deterministic function f(x,r) is computed

- Applied to decision problems
- Input: x
- Question: Is $x \in L$?
- A sample point $r \in \{0, 1, \dots, n-1\}$ is chosen
- A 0-1 valued deterministic function f(x,r) is computed
- Result declared is f(x, r)

- Applied to decision problems
- Input: x
- Question: Is $x \in L$?
- A sample point $r \in \{0, 1, \dots, n-1\}$ is chosen
- A 0-1 valued deterministic function f(x,r) is computed
- Result declared is f(x, r)
- 0 means No and 1 means Yes.

• If $x \notin L$ then for all $r \in \{0, 1, \dots, n-1\}$, f(x, r) = 0.

- If $x \notin L$ then for all $r \in \{0, 1, \dots, n-1\}$, f(x, r) = 0.
- If $x \in L$ then the fraction of the values of r for which f(x,r) = 1 is at least 1ϵ .

- If $x \notin L$ then for all $r \in \{0, 1, \dots, n-1\}$, f(x, r) = 0.
- If $x \in L$ then the fraction of the values of r for which f(x,r) = 1 is at least 1ϵ .
- So, if the algorithm answers Yes, then it is correct answer.

- If $x \notin L$ then for all $r \in \{0, 1, \dots, n-1\}$, f(x, r) = 0.
- If $x \in L$ then the fraction of the values of r for which f(x,r) = 1 is at least 1ϵ .
- So, if the algorithm answers Yes, then it is correct answer.
- A No answer by the algorithm may be wrong.

If the algorithm is run k times, then the error probability is at most ek and hence can be made arbitrarily small.

- If the algorithm is run k times, then the error probability is at most ek and hence can be made arbitrarily small.
- The analysis assumes mutual independence of the successive sample points used.

- If the algorithm is run k times, then the error probability is at most ek and hence can be made arbitrarily small.
- The analysis assumes mutual independence of the successive sample points used.
- In reality, pseudo-random number generators are used in implementation.

- If the algorithm is run k times, then the error probability is at most ek and hence can be made arbitrarily small.
- The analysis assumes mutual independence of the successive sample points used.
- In reality, pseudo-random number generators are used in implementation.
- So, all the sample points are completely determined by the seed.

- If the algorithm is run k times, then the error probability is at most ek and hence can be made arbitrarily small.
- The analysis assumes mutual independence of the successive sample points used.
- In reality, pseudo-random number generators are used in implementation.
- So, all the sample points are completely determined by the seed.
- Analysis does not reflect reality.

Here is an alternative approach.

- Here is an alternative approach.
- Consider an OA(2, k, n).

- Here is an alternative approach.
- Consider an OA(2, k, n).
- This array has n^2 rows.

- Here is an alternative approach.
- Consider an OA(2, k, n).
- This array has n^2 rows.
- **•** Generate $2 \log n$ true random bits.

Use of OAs

- Here is an alternative approach.
- Consider an OA(2, k, n).
- This array has n^2 rows.
- Generate $2 \log n$ true random bits.
- Use them to index a specific row of the OA.

Use of OAs

- Here is an alternative approach.
- Consider an OA(2, k, n).
- This array has n^2 rows.
- Generate $2 \log n$ true random bits.
- Use them to index a specific row of the OA.
- Run the Monte Carlo Algorithm (k times) using the k elements in the row selected as the sample points.

• Let U denote the universe of sample points; |U| = n.

- Let U denote the universe of sample points; |U| = n.
- Let $S \subseteq U$ be the set of *witnesses*; Then $|S| \ge (1 \epsilon)n$.

- Let U denote the universe of sample points; |U| = n.
- Let $S \subseteq U$ be the set of *witnesses*; Then $|S| \ge (1 \epsilon)n$.
- Call a row of the OA a *bad row* if none of the elements in the row is a witness.

- Let U denote the universe of sample points; |U| = n.
- Let $S \subseteq U$ be the set of *witnesses*; Then $|S| \ge (1 \epsilon)n$.
- Call a row of the OA a *bad row* if none of the elements in the row is a witness.
- Then error probability is simply the probability that a randomly selected row of the OA is bad.

- Let U denote the universe of sample points; |U| = n.
- Let $S \subseteq U$ be the set of *witnesses*; Then $|S| \ge (1 \epsilon)n$.
- Call a row of the OA a *bad row* if none of the elements in the row is a witness.
- Then error probability is simply the probability that a randomly selected row of the OA is bad.
- Can be shown to be at most $\frac{\epsilon}{1+(k-1)(1-\epsilon)}$ using combinatorial properties of OAs.

A similar idea was first proposed by Chor and Goldreich under the name *two-point based sampling*. They used a *specific* OA and derived bounds on error probability by using complex techniques.

- A similar idea was first proposed by Chor and Goldreich under the name *two-point based sampling*. They used a *specific* OA and derived bounds on error probability by using complex techniques.
- The scheme presented is a generlization that

- A similar idea was first proposed by Chor and Goldreich under the name *two-point based sampling*. They used a *specific* OA and derived bounds on error probability by using complex techniques.
- The scheme presented is a generlization that
 works for any OA.

- A similar idea was first proposed by Chor and Goldreich under the name *two-point based sampling*. They used a *specific* OA and derived bounds on error probability by using complex techniques.
- The scheme presented is a generlization that
 - works for any OA.
 - yields better error probability.

- A similar idea was first proposed by Chor and Goldreich under the name *two-point based sampling*. They used a *specific* OA and derived bounds on error probability by using complex techniques.
- The scheme presented is a generlization that
 - works for any OA.
 - yields better error probability.
 - is analyzable by elementary techniques.

A comparison

Name	# ran. bits	Error Prob.
Original Scheme	$k\log n$	ϵ^k
Two-Point Scheme	$2\log n$	$\frac{\epsilon}{(1-\epsilon)k}$
OA Scheme	$2\log n$	$\frac{\epsilon}{1+(k-1)(1-\epsilon)}$

Extensions

Dukes and Ling have extended the result to OAs of strength t.

Extensions

- Dukes and Ling have extended the result to OAs of strength t.
- If we use OA(2, k, 2ⁿ), the sample points would be n-bit binary vectors and so the scheme can be used for random pattern built-in self testing of VLSI chips.

Extensions

- Dukes and Ling have extended the result to OAs of strength t.
- If we use OA(2, k, 2ⁿ), the sample points would be n-bit binary vectors and so the scheme can be used for random pattern built-in self testing of VLSI chips.
- In some situations, OAs help to completely eliminate random bits used in randomized algorithms so that the resulting algorithm is a deterministic one. This process is called (total) *derandomization*.

Concluding Remarks

There are several more applications of OAs to CS.

Concluding Remarks

- There are several more applications of OAs to CS.
- In view of their ubiquity, OAs are now getting recognized as fundamental combinatorial structures (arguably on par with Graphs)

Concluding Remarks

- There are several more applications of OAs to CS.
- In view of their ubiquity, OAs are now getting recognized as fundamental combinatorial structures (arguably on par with Graphs)
- The relationship between combinatorics and computer science is a mutually beneficial symbiotic one.