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Orthogonal Arrays

An orthogonal array OAλ(t, k, v) is a λvt × k
array of symbols from a v-set, such that in
any t columns, every possible list of t symbols
occurs in exactly λ rows.

An OA is simple if every row is distinct.
If λ = 1, we simply denote it by OA(t, k, v).
If v = 2, then these are called binary
orthogonal arrays.
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An Example

Here is a simple OA(3, 4, 2).
1 2 3 4
0 0 0 0
1 1 0 0
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 1
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Theory of OAs

For what parameters t, k, v and λ, do they
exist?

How to construct them?
Given t, k, v, determine the smallest λ for
which an OAλ(t, k, v) exists.
For basic theory of OAs, see the recent book
on Orthogonal Arrays by Hedayat, Sloane
and Stuffken.
Here we will focus on Applications of OAs to
Computer Science.
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Applications of OAs

Threshold Schemes

Authentication Codes
Derandomization of Algorithms
Random Pattern Testing of VLSI Chips
Universal Hash Functions
Perfect Local Randomizers
and many more.

ICDM’06—Applications of OAs to CS – p.5



Applications of OAs

Threshold Schemes
Authentication Codes

Derandomization of Algorithms
Random Pattern Testing of VLSI Chips
Universal Hash Functions
Perfect Local Randomizers
and many more.

ICDM’06—Applications of OAs to CS – p.5



Applications of OAs

Threshold Schemes
Authentication Codes
Derandomization of Algorithms

Random Pattern Testing of VLSI Chips
Universal Hash Functions
Perfect Local Randomizers
and many more.

ICDM’06—Applications of OAs to CS – p.5



Applications of OAs

Threshold Schemes
Authentication Codes
Derandomization of Algorithms
Random Pattern Testing of VLSI Chips

Universal Hash Functions
Perfect Local Randomizers
and many more.

ICDM’06—Applications of OAs to CS – p.5



Applications of OAs

Threshold Schemes
Authentication Codes
Derandomization of Algorithms
Random Pattern Testing of VLSI Chips
Universal Hash Functions

Perfect Local Randomizers
and many more.

ICDM’06—Applications of OAs to CS – p.5



Applications of OAs

Threshold Schemes
Authentication Codes
Derandomization of Algorithms
Random Pattern Testing of VLSI Chips
Universal Hash Functions
Perfect Local Randomizers

and many more.

ICDM’06—Applications of OAs to CS – p.5



Applications of OAs

Threshold Schemes
Authentication Codes
Derandomization of Algorithms
Random Pattern Testing of VLSI Chips
Universal Hash Functions
Perfect Local Randomizers
and many more.

ICDM’06—Applications of OAs to CS – p.5



Threshold Schemes
A method of sharing a secret among a set of
n participants so that only groups of
participants of size at least t could gain
access to the secret.

Let P be a set of n participants, say
P1, P2, . . . Pn.
Let K be the set of possible values of the
secret.
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The Model
A particular secret K ∈ K is chosen by a
special participant called the dealer , D.

When D wants to share the secret K among
the participants in P, he gives each
participant some partial information called a
share.
The shares should be distributed secretly. Let
S be the set of possible values of the shares.
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Perfect Threshold Schemes
We call such a method of sharing a secret a
perfect (t, n) threshold scheme, if the
following two properties are satisfied.

1. If a subset of participants B ⊆ P pool their
shares, then they can determine the value
of K provided |B| ≥ t.

2. On the other hand, if |B| < t, then they
should be able to determine nothing about
the value of K.
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Ideal Threshold Schemes
It is important to minimize the information
(share size) a participant is expected to
remember for security purposes.

It is not too difficult to see that in any perfect
thresold scheme |S| ≥ |K|.
A perfect thresold scheme in which |S| = |K|,
is called an ideal threshold schemes.
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Relation to OAs
Theorem: An ideal (t, n) threshold scheme
with |K| = v exists if and only if an
OA(t, n + 1, v) exists.

First observed by Keith Martin
Also, independently by Dawson et. al.
Fairly simple; we shall prove half of it.
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Construction
Start with OA(t, n + 1, v).

First column corresponds to dealer.
Remaining columns correspond to the
participants.
To distribute a specific key K, dealer selects
a random row of OA such that K appears in
the first column.
Dealer gives out remaining elements of the
row as shares to the participants.

ICDM’06—Applications of OAs to CS – p.11



Construction
Start with OA(t, n + 1, v).
First column corresponds to dealer.

Remaining columns correspond to the
participants.
To distribute a specific key K, dealer selects
a random row of OA such that K appears in
the first column.
Dealer gives out remaining elements of the
row as shares to the participants.

ICDM’06—Applications of OAs to CS – p.11



Construction
Start with OA(t, n + 1, v).
First column corresponds to dealer.
Remaining columns correspond to the
participants.

To distribute a specific key K, dealer selects
a random row of OA such that K appears in
the first column.
Dealer gives out remaining elements of the
row as shares to the participants.

ICDM’06—Applications of OAs to CS – p.11



Construction
Start with OA(t, n + 1, v).
First column corresponds to dealer.
Remaining columns correspond to the
participants.
To distribute a specific key K, dealer selects
a random row of OA such that K appears in
the first column.

Dealer gives out remaining elements of the
row as shares to the participants.

ICDM’06—Applications of OAs to CS – p.11



Construction
Start with OA(t, n + 1, v).
First column corresponds to dealer.
Remaining columns correspond to the
participants.
To distribute a specific key K, dealer selects
a random row of OA such that K appears in
the first column.
Dealer gives out remaining elements of the
row as shares to the participants.

ICDM’06—Applications of OAs to CS – p.11



Validity

When t participants pool their shares, their
collective information determines a unique
row of the OA. So, they can figure out K as
the first element in the row.

Can a group of t − 1 participants compute K?
Any possible value of secret along with
shares of t − 1 participants determine a
unique row of the OA.
Hence, t − 1 participants can get no
information about the secret.
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Authentication Codes - Idea
Alice wants to communicate to Bob over a
public channel.

Oscar, the bad guy, can introduce and/or
modify messages in the channel.
The purpose is to protect the integrity of the
information (and not to provide secrecy ).
When Bob receives a message from Alice,
How can he be sure that the message was
really sent by Alice and is not tampered with
along the way?
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Authentication Codes -
Definition

An Authentication Code is a four-tuple
(S,A,K, E), where

1. S is a finite set of source states. Let
|S| = k.

2. A is a finite set of authenticators. Let
|A| = l.

3. K is a finite set of keys.
4. For each K ∈ K, there is an authentication

rule ek ∈ E . Each eK : S → A.
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Authentication Codes -
Model

Alice and Bob jointly choose a secret key
K ∈ K.

Suppose Alice wants to send s ∈ S.
Alice uses authentication rule eK to produce
the authenticator a = eK(s).
Alice sends the message m = (s, a) over the
channel.
When Bob receives m, he checks that
a = eK(s) to authenticate.
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Authentication Matrix
An authentication code can be represented
by an |E| × |S| authentication matrix , where

the rows are indexed by authentication
rules
the columns are indexed by source states
the entry in row e and column s is e(s).
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Deception Probabilities

When Oscar places a new message
m = (s, a) in the channel, it is called
impersonation.

Let Pd0
be the probability of successfully

impersonating.
When Oscar sees a message m and changes
it to a message m

′

6= m, this is called
substitution.
Let Pd1

be the probability of successully
substituting.
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Authentication Codes -
Goals

When designing a good authentication code,
we want to

Minimize Pd0
.

Minimize Pd1
.

Also, minimize the number of
authentication rules.

It is not too difficult to show that Pd0
≥ 1/l and

Pd1
≥ 1/l, where l is the number of

authenticators.
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Connection to OAs
Theorem: Suppose we have an authentication
code for k source states and having l
authenticators, in which Pd0

= Pd1
= 1/l. Then

1. |E| ≥ l2, and equality occurs if and only if
the authentication matrix is an orthogonal
array OA(2, k, l) (with λ = 1)

2. |E| ≥ k(l − 1) + 1, and equality occurs if
and only if the authentication matrix is an
OAλ(2, k, l) where

λ =
k(l − 1) + 1

l2
.
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A Glimpse of Proof

Suppose, we use OA(2, k, l) as the
authentication matrix. Then, it is easy to see
that

Number of authentication rules is l2.
Pd0

= 1/l as in each column each
authenticator appears exactly l times.
Pd1

= 1/l as any ordered pair of
authenticators appears exactly once in any
two selected columns.
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Illustration
4 states, 3 authenticators, 9 encoding rules.

s1 s2 s3 s4

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1 ICDM’06—Applications of OAs to CS – p.21



Illustration
Suppose (s2, 3) is observed by Oscar.

s1 s2 s3 s4

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1
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Illustration
Suppose Oscar wants to substitute s4.

s1 s2 s3 s4

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1 ICDM’06—Applications of OAs to CS – p.21



Probabilistic Algorithms

A probabilistic algorithm will be using random
bits during the course of its execution unlike a
deterministic algorithm. There are two types.

Las Vegas algorithm may fail to give an answer
with probability ε, but if it does give an
answer, it is correct.

Monte Carlo algorithm always gives an answer,
but the answer may be incorrect with some
probability ε.
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Generic Monte Carlo
Algorithm

Applied to decision problems

Input: x

Question: Is x ∈ L?
A sample point r ∈ {0, 1, . . . , n − 1} is chosen

A 0-1 valued deterministic function f(x, r) is
computed
Result declared is f(x, r)

0 means No and 1 means Yes.
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Yes-biased Version
If x 6∈ L then for all r ∈ {0, 1, . . . , n − 1},
f(x, r) = 0.

If x ∈ L then the fraction of the values of r for
which f(x, r) = 1 is at least 1 − ε.
So, if the algorithm answers Yes, then it is
correct answer.
A No answer by the algorithm may be wrong.
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Exposing the flaw

If the algorithm is run k times, then the error
probability is at most εk and hence can be
made arbitrarily small.

The analysis assumes mutual independence
of the successive sample points used.
In reality, pseudo-random number generators
are used in implementation.
So, all the sample points are completely
determined by the seed.
Analysis does not reflect reality.
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Use of OAs
Here is an alternative approach.

Consider an OA(2, k, n).
This array has n2 rows.
Generate 2 log n true random bits.
Use them to index a specific row of the OA.
Run the Monte Carlo Algorithm (k times)
using the k elements in the row selected as
the sample points.
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Calculation of Error
Probability

Let U denote the universe of sample points;
|U | = n.

Let S ⊆ U be the set of witnesses; Then
|S| ≥ (1 − ε)n.
Call a row of the OA a bad row if none of the
elements in the row is a witness.
Then error probability is simply the probability
that a randomly selected row of the OA is bad.
Can be shown to be at most ε

1+(k−1)(1−ε) using
combinatorial properties of OAs.
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Remarks
A similar idea was first proposed by Chor and
Goldreich under the name two-point based
sampling. They used a specific OA and
derived bounds on error probability by using
complex techniques.

The scheme presented is a generlization that
works for any OA.
yields better error probability.
is analyzable by elementary techniques.
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A comparison

Name # ran. bits Error Prob.
Original Scheme k log n εk

Two-Point Scheme 2 log n ε

(1−ε)k

OA Scheme 2 log n ε

1+(k−1)(1−ε)
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Extensions
Dukes and Ling have extended the result to
OAs of strength t.

If we use OA(2, k, 2n), the sample points
would be n-bit binary vectors and so the
scheme can be used for random pattern
built-in self testing of VLSI chips.
In some situations, OAs help to completely
eliminate random bits used in randomized
algorithms so that the resulting algorithm is a
deterministic one. This process is called
(total) derandomization.
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Concluding Remarks

There are several more applications of OAs to
CS.

In view of their ubiquity, OAs are now getting
recognized as fundamental combinatorial
structures (arguably on par with Graphs)
The relationship between combinatorics and
computer science is a mutually beneficial
symbiotic one.
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