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Abstract. Orthogonal arrays (OAs) are basic combinatorial structures,
originally studied by statisticians motivated by their applications to design of
experiments. In recent years, they have found numerous applications in com-
puter science. Among their applications are derandomization of algorithms,
random pattern testing of VLSI chips, authentication codes, universal
hash functions, threshold schemes, and perfect local randomizers. In this
article, we survey the applications of orthogonal arrays to computer science.
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1 Introduction

The field of combinatorial design theory has gained a lot with the advent of com-
puters. Many questions, which remained open for several years, about the existence
of certain combinatorial designs have been settled by computer searches. A classic
example is the proof of the non-existence of projective planes of order 10. However,
more often than not, the contributions of combinatorial designs to computer science
have been overlooked and not appreciated.

Recent years have seen numerous interesting applications of combinatorics to
computer science in general and to cryptography in particular. This is exem-
plified by the following surveys: applications of error-correcting codes to cryp-
tography (Sloane [45]), applications of combinatorial designs to computer science
(Colbourn and Van Oorschot [14]), applications of finite geometry to cryptography
(Beutelspacher [8]), applications of combinatorial designs to cryptography (Stinson
[50]) and applications of combinatorial designs to communications, cryptography
and networking (Colbourn et al., [15]). Thus the interaction between combinatorial
designs and computer science is symbiotic in nature rather than parasitic.

There are a wide variety of combinatorial designs and in this article, we will
focus exclusively on the applications of orthogonal arrays. The applications of
orthogonal arrays to statistical design of experiments are well known and can even
be found in textbooks (see Hedayat et al., [24] for example). Hence, we will focus
exclusively on the applications of orthogonal arrays to computer science. Among
their applications are derandomization of algorithms, random pattern test-
ing of VLSI chips, authentication codes, universal hash functions, thresh-
old schemes, and perfect local randomizers. The above collection of applica-
tions coming from diverse areas attests to the usefulness of orthogonal arrays.
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In Section 3, applications of OAs to some sampling strategies associated with
randomized algorithms are presented. Section 4 explains how the same techniques
could be exploited in random pattern testing of VLSI chips in an effective manner.
Under appropriate circumstances, a randomized algorithm can be transformed into
a deterministic polynomial time algorithm using orthogonal arrays. This is known
as total derandomization and it is the topic of Section 5.

Next we focus on applications of OAs to cryptography. Sections 6 and 7 discuss
the applications of OAs to authentication codes and universal hash functions respec-
tively. In Section 8, the construction of ideal secret sharing schemes for threshold
access structures using orthogonal arrays is illustrated. Finally, perfect local ran-
domizers, which are really orthogonal arrays in disguise, are discussed in Section 9.

2 Definitions

An orthogonal array OAλ(t, k, v) is a λvt × k array of v symbols, such that in any
t columns of the array every one of the possible vt ordered t-tuples (not necessarily
distinct) of symbols occurs in exactly λ rows. Usually t is referred to as the strength
of the orthogonal array, k is called the number of factors, v is called the number
of levels and λ is called the index of the orthogonal array. If λ = 1, then we write
OA(t, k, v). An orthogonal array is said to be simple if no two rows are identical.
Of course, an array with λ = 1 is simple. In this article, we consider only simple
arrays. As an example, an OA(3, 4, 2) is shown in Table 1. We refer the reader to
the excellent book by Hedayat et al., [24] for the basic theory of orthogonal arrays
including methods of constructions and bounds. In this survey, our primary focus
will be on their applications.

Table 1: An OA(3, 4, 2)

0 0 0 0
1 1 0 0
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 1

3 Partial Derandomization of Monte Carlo

Algorithms

3.1 Basics

There are two basic types of randomized algorithms viz., Las Vegas algorithms and
Monte Carlo algorithms. Here we will be concerned primarily with the Monte Carlo
algorithms. For any problem instance I, a Monte Carlo algorithm always gives an
answer, but the answer may be incorrect with some probability ε. Monte Carlo
algorithms are usually assumed to be algorithms for decision problems, and we will
also make that assumption here.
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A Monte Carlo algorithm is defined to be yes-biased if the following conditions
are satisfied:

1. If the instance I is a no-instance, then the algorithm answers “no”.

2. If the instance I is a yes-instance, then the probability that the algorithm
answers “yes” is at least 1 − ε, where ε ≥ 0 is some fixed constant.

Hence, if the algorithm answers “yes”, then we know that the answer is
correct. However, if the algorithm answers “no”, then there is the possibility that
the answer may be incorrect. A no-biased Monte Carlo algorithm is defined in the
obvious way and there is no loss of generality in considering only yes-biased Monte
Carlo algorithms.

A yes-biased Monte Carlo algorithm can be viewed as a two-stage procedure in
which first a “sample point” is chosen at random and next a deterministic procedure
is applied to the sample point. This view is usually known as the witness paradigm.
In the generic case the sample point is an integer r ∈ {0, 1, . . . , n−1} and the deter-
ministic procedure can be viewed as computing a zero-one valued function f(I, r).
If f(I, r) = 0 then the algorithm answers “no” and if f(I, r) = 1 then the algorithm
answers “yes”. The function f should satisfy the following: If I is a no-instance,
then for all r ∈ {0, 1, . . . , n − 1}, f(I, r) = 0 and If I is a yes-instance, then the
fraction of the values of r for which f(I, r) = 1 is at least 1 − ε.

There are many problems for which no fast deterministic algorithm is known,
but which can be solved efficiently using randomized algorithms. Notable examples
are the massive use of randomness in computational number theory [4] and in par-
allel algorithms [32]. A good survey of randomization techniques used in sequential
and distributed algorithms is presented in [22].

3.2 Two-Point Based Sampling

The reason why a biased algorithm is useful is that the error probability can be
made as small as desired by repeated application of the algorithm. Suppose we
have a yes-biased algorithm, and we apply the algorithm k times. If we get at least
one “yes” answer we can quit, since the instance x must be a yes-instance. On the
other hand, if x is a yes instance, then the probability of getting k “no” answers is
at most εk, which can be made arbitrarily small by taking k large enough.

However, the conclusion that the error probability can be made exponentially
small is based on the assumption that the sequence of random numbers used in the
successive trials are independent and uniformly distributed. When a randomized
algorithm is implemented in actual practice, one always uses a pseudo-random num-
ber generator which produces a sequence whose later values come from the previous
values in a deterministic fashion. This invalidates the assumption of independence
and might cause one to regard results about randomized algorithms with suspicion.

In view of this objection, many researchers attempted to construct pseudo-
random number generators for which provable bounds could be obtained on the
probability that none of the k successive values produced is a witness. A simple and
effective method known as two-point sampling is developed by Chor and Goldreich.

For the sake of simplicity, we assume that U = Zp, the set of residues modulo
a prime p. If n = |U | is not a prime, then we can use the smallest prime number p
such that n ≤ p ≤ 2n; that such a prime exists is proved by Chebyshev and later by
Paul Erdös. The construction, developed by Chor and Goldreich [12] building on
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an observation by Joffe [27], proceeds as follows: Choose two random independent
elements a and b in Zp with uniform probability. Compute the residues ri = a+i×b
mod p, for 1 ≤ i ≤ k. These residues are then used as the random numbers in the
k trials of the Monte Carlo algorithm. It is not too hard to see that the ri’s are
pairwise-independent random variables. By using Chebyshev’s inequality, Chor and
Goldreich prove that the probability that none of the ri’s is a witness is at most
ε/(1 − ε)k.

If the successive random numbers used are independent of each other, then the
error probability is εk and the number of true random bits needed is k logn. In the
above technique, the number of random bits used is 2 logn and the error probability
achieved is ε/(1 − ε)k. This is significant as random bits are a scarce resource and
hence need to be used sparingly.

3.3 Relevance of Orthogonal Arrays

Orthogonal arrays could be used in two-point sampling strategies as follows. Con-
sider an OA(2, k, n). This array has n2 rows. Generate 2 logn random bits and use
them to index a specific row of the OA. Now test the Monte Carlo algorithm on the
k points which are elements of the row selected.

A bound on the error probability can be calculated using elementary combina-
torial properties of orthogonal arrays. We proceed to do this now. Let U denote
the universe of sample points and let |U | = n. Let S ⊆ U be the set of witnesses
or “good” sample points. Then |S| = (1 − ε)n = m (say).

Let xi denote the number of rows of the orthogonal array in which there are
exactly i occurrences of the elements from S. Call a row of the matrix a bad row if
none of the elements in the row is a witness. Then the error probability is simply
the probability that the randomly selected row is a bad row. Hence, for a given S,
the error probability is

err(S) =
x0

n2
.

Note that we actually do not know the set S explicitly. The only thing that we
know about S is the fact that |S| = m. So the actual error probability is bounded
above by

err = max{err(S) : S ⊆ U, |S| = m}.

We first derive three simple equations from the elementary properties of orthog-
onal arrays. Since an OA(2, k, n) has n2 rows, we have

n∑

i=0

xi = n2.

We can count the number of occurrences of good points in the array in two ways.
There are exactly xi rows in which there are i occurrences of good points.
An OA(2, k, n) is also an OAn(1, k, n). Hence in any column any point occurs
exactly n times. So, the number of occurrences of good points in a column is nm.
As there are k columns, the total number of occurrences of good points in the whole
array is knm. This yields the following equation:

n∑

i=0

ixi = knm.
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Once again, we can count the number of occurrences of pairs of good points
which lie in the same row in two ways. In any row in which there are i occurrences
of good points, there will be i(i − 1) occurrences of pairs of good points. On the
other hand, if we look at any two columns, the number of occurrences of pairs of
good points which lie in the same row is simply m2. This is because any particular
pair of good points occurs only once in any given pair of columns since the array is
an OA(2, k, n), and there are m2 different such pairs of good points. Now the two
columns can be selected in k(k− 1) ways and so the total number of occurrences is
k(k − 1)m2. This yields the following equation:

n∑

i=0

i(i− 1)xi = k(k − 1)m2.

To compute the error probability, we need an upper bound on x0. Equivalently,
we need a lower bound on

∑n
i=1 xi, subject to the constraints

n∑

i=1

ixi = knm

n∑

i=1

i(i− 1)xi = k(k − 1)m2.

Now, let z be any real number. Then clearly

0 ≤
n∑

i=1

(i− z)2xi

=
n∑

i=1

(i2 − 2zi+ z2)xi

=
n∑

i=1

i2xi − 2z
n∑

i=1

ixi + z2
n∑

i=1

xi

= k(k − 1)m2 + knm− 2zknm+ z2
n∑

i=1

xi

It follows that
n∑

i=1

xi ≥ 2knmz − knm− k(k − 1)m2

z2
.

The right hand side of the above equation is maximized when

z =
n+ (k − 1)m

n
.

Hence we get
n∑

i=1

xi ≥ kmn2

n+ (k − 1)m
.

Equivalently, we have

x0 ≤ n2 − kmn2

n+ (k − 1)m
.
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Hence we get the following bound on the error probability:

err ≤ 1 − km

n+ (k − 1)m
.

Since m = n(1 − ε), we have that

err ≤ ε

1 + (k − 1)(1 − ε)
.

Chor and Goldreich’s construction of sequence of a two-point based random
numbers is essentially the construction of a specific OA(2, k, n). Our technique
presented above is based on an arbitrary OA(2, k, n) and hence is more general.
On the other hand, despite the generality of the technique, our bound of

ε

1 + (k − 1)(1 − ε)

is always less than or equal to their bound of
ε

(1 − ε)k
.

Also, while the proof of our bound uses only elementary combinatorial properties,
the proof of their bound uses sophisticated machinery like Chebyshev’s inequality.
Thus we have a simpler proof of a better bound which is applicable in a more general
context. This is due to the fact that two-point sampling is simply an application of
orthogonal arrays.

In a slightly different context, Spencer (see [46] and Section 4) developed a
bound on the error probability using the Bonferroni inequalities. His bound is

1
1 + k(1 − ε)

.

Once again, despite the use of complex techniques, this bound is inferior to the
above bound developed using orthogonal arrays.

Further details on the analysis of two-point based sampling can be found in [21].
An extension of the same technique to the analysis of t-point based sampling can
be found in [17].

4 Testing VLSI Chips

4.1 Background

The basic testing problem is to determine an optimal testing procedure to identify
digital systems which have become faulty because of physical failures. In most cases
involving VLSI chips, one is not usually concerned with detecting the exact physical
failure; what is desired is merely to determine the existence of (or absence of) any
physical failure.

The large number and complex nature of physical failures dictates that a practi-
cal approach to testing should avoid working directly with physical failures. Often
the problem is attacked by describing the effects of physical failures at some higher
level. This description is called a fault model [35]. If the fault model accurately
describes all the physical failures of interest, then one only needs to derive tests to
detect all the faults in the fault model.
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In what follows, the digital system chosen is combinational circuits. This is
because, in spite of their simplicity, combinational circuits capture the complex-
ity of the testing process. Further, the widespread use of design for testability
techniques, such as Level-Sensitive Scan Design or LSSD [18], that transform a
sequential circuit into a combinational one for testing purposes, has lent increasing
importance to specialized methods for testing combinational circuits.

In what follows, the fault model selected is the classical Single, permanent Stuck-
at Fault (SSF) model. In this model, testing is done to detect the capability of every
line in the circuit to carry both a 0 and a 1 signal. A Single Stuck-at Fault in a
circuit is a good model of various physical failures, such as a break in a diffusion line
caused by an unintentional scratch on IC chip. Further the high coverage of multiple
faults by Single Fault test sets has made the SSF model even more important [1, 35].

The basic testing problem, in the specific context of combinational circuits and
SSF model, can be described as follows.

Let C be a well formed combinational circuit [23] with l lines and F be the
set of 2l Single Stuck-at Faults in C. Let x1, x2, . . . , xn be the set of all primary
inputs and y1, y2, . . . , ym be the set of all primary outputs of C. The symbol Z[X ]
is used to denote the output vector Y = (y1, y2, . . . , ym), when the input vector
X = (x1, x2, . . . , xn) is applied to the circuit. Let Zf [X ] represent the output vec-
tor of the circuit in the presence of the fault f ∈ F . It is clear that any input vector
Xt which produces different output vectors Z[Xt] and Zf [Xt] is a test vector for f .
The set of all test vectors which can detect f will be denoted by T (f). Thus

T (f) = {Xt | Z[Xt] �= Zf [Xt]}.

The basic testing problem is to construct a set of test vectors T (F ) such that for
every fault f ∈ F , there exists at least one test vector in T (F ) which will detect f i.e,

∀ f ∈ F ∃ Xt ∈ T (F ) such that Xt ∈ T (f).

In practice, it is difficult to test for all the faults and hence what is attempted is
merely a high amount of fault coverage (95% to 99%). The term fault coverage
refers to the fraction of the modeled faults detected by the test vectors. Further
the test costs may be broken down into two categories viz., cost of test generation
and cost of test application. The former is a one-time cost and is measured by the
computational effort required to generate the vectors. The later is a recurrent cost
and is measured by the time taken to apply the vectors to the circuit under test.

4.2 Built-in Self Test

The traditional testing strategy is to compute a set T (F ) of input vectors such that
for each possible fault there is an input vector in T (F ) that distinguishes the correct
circuit from the circuit with the fault. If this strategy is used, the time required to
fetch the patterns, from where they are stored to the circuit, severely limits the rate
at which the patterns can be applied. Built-in self test (BIST) has been suggested
as a way to overcome this bottleneck. Simply speaking, the idea is to have the chip
test itself. The test vectors are generated by special purpose hardware which itself
is a part of the chip. As a consequence the test vectors can be generated and applied
as fast as one pattern per machine cycle. The speed gained is normally worth the
additional investment in chip area.

Random pattern testing strategy is typically used in BIST schemes. In this
approach, a random pattern generator is used to generate the test vectors which
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are applied to the circuit under test. A comparator compares the actual response
from the circuit under the test and the expected response to determine whether
or not an error has been observed. The random test may stop either on the first
observed error or after a sufficient number of random tests (test length) yield a
correct response. Several random self-test architectures have been proposed in the
literature [5]. Basically, all these versions use a linear feedback shift register (LFSR)
to generate pseudo-random inputs that are fed to the circuit.

The fault coverage desired essentially dictates the test length in a random
pattern test generator. So, let us focus on the estimation of test length [39] to
achieve a prespecified amount of fault coverage. The detection probability qi, of
a fault fi, is the probability that a randomly selected input vector will detect the
fault. In other words

qi =
|T (fi)|

2n
.

The problem of exact computation of detectability of a fault is NP-hard. However,
algorithms which work well in practice for exact and approximate computations of
detectability of each fault in a circuit are available [10, 40, 41]. The escape proba-
bility ei, of a fault fi, is the probability that the fault will go undetected after the
application of t random input vectors. The escape probability is given by

ei = (1 − qi)t.

Similarly, the escape probability e of a fault set {f1, f2, . . . fm} is the probability
that at least one member of the fault set will be left undetected after the application
of t random input vectors. The escape probability of a fault set can be computed
using the Markov chain model (using the escape probabilities of individual faults).
The minimum random pattern test length is then merely the smallest t that satisfies
e ≤ eth, where eth is the acceptable error probabaility. Finally, observe that this
analysis has assumed independence of the random vectors generated.

4.3 Provably Good Pattern Generators

As with randomized algorithms, the primary objection to the random pattern testa-
bility is that the analysis of test length and escape probability assumed complete
independence of the vectors generated and randomness of each vector. In practice
we only use pseudo-random generators where the successive vectors produced are
completely determined by the initial seed vector. Thus the analysis does not reflect
reality and hence we cannot be really sure of the actual fault coverage provided.

In view of this objection, T. Spenser [46] developed a pseudo-random pattern
generator for use in VLSI testing. This generator is essentially based on the idea
of two-point sampling method for randomized algorithms developed by Chor and
Goldreich [12]. The generator is implemented as a modification of the classical
LFSR such that the increases in the delay and the required hardware are only by
at most a small constant factor. Thus, it can be used in practice.

The input vectors can be considered as elements of the finite field GF (2n) with
2n elements. Let z be a generator of the cyclic multiplicative group of this field.
The seed for the generator consists of an ordered pair (a, b) of elements of GF (2n),
such that a �= 0. The ith element produced by the generator is azi−1 + b. The
escape probability of a fault fi using this pattern generator is shown to be 1/(1+qit)
provided qit is an integer. The analysis of the escape probability is realistic and
reflects the actual generator that is being used. Once again, this generator can be
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interpreted as an orthogonal array OA(2, t, 2n) and hence the analysis developed in
Section 3 is applicable here as well.

5 Total Derandomization

Any randomized algorithm typically uses random bits in the course of its com-
putation. So, we somehow need to generate random bits to actually implement
randomized algorithms. In this regard John Von Neumann says that “anyone who
attempts to generate random numbers by an arithmetical process is in a state of
sin”. On the other hand, there exists chaotic processes in nature, such as radioactive
decay and the thermal noise in a transistor, that allow the construction of a random
number generator whose behavior is for all practical purposes equivalent to that of
a true random source. Even in these cases whether the chaotic processes involved
are truly random is a philosophical question related to the question of whether the
universe is deterministic or not, and seems to be impossible to answer to everyone’s
satisfaction. For a philosophical discussion of randomness the reader is referred to
the book by Von Mises [31] and the one by Popper [34]. In any case, it is clear
that randomness should be considered as a scarce resource which should be used as
meagerly as possible. Thus we could talk of randomness complexity like we do of
time and space complexity. The randomness complexity of an algorithm could be
defined as the function that describes the growth of the number of random bits used
by the algorithm with the size of the input. Under this view we would like to make
sure that the randomness complexity of our randomized algorithms is fairly small.

Hence many researchers have developed techniques to reduce the number of
random bits needed in computation and to eliminate completely, if possible, the
use of random bits. When we completely eliminate the random bits needed in the
randomized algorithm, we are in effect converting the randomized algorithm to a
deterministic algorithm. This process is called (total) derandomization. For an
excellent survey of some derandomization techniques the reader is referred to the
recent book by Alon and Spencer [3].

Our emphasis here will be on a derandomization technique known as the t-wise
independence method. This method is a general technique for converting random-
ized algorithms, whose analysis depends only on t-wise rather than fully indepen-
dent random choices, into deterministic ones. This method was first developed by
M. Luby for the case t = 2 in the context of the maximal independent set problem
[29] and later generalized to arbitrary constant t by Alon, Babai and Itai [2].

The basic idea is to replace an exponentially large sample space by one of poly-
nomial size. If a random variable on such a space takes a certain value with positive
probability, then we can find a point in the sample space in which this happens
in polynomial time simply by deterministically checking all the points. Moreover,
the checking can be parallelized, if desired, using a polynomial number of parallel
processors.

For the sake of simplicity, consider a randomized algorithm which requires n
random bits, where n is also the size of the input. Then the size of the sample space
is 2n. Suppose that the analysis of the randomized algorithm does not really require
the complete independence of the random bits but only t-wise independence. Then,
one could use any OAλ(t, n, 2) as the sample space instead of the above sample
space with 2n points.

If we can construct an OAλ(t, n, 2) with polynomial (in n) number of rows,
then we have a polynomial sample space with t-wise independent random variables.
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Such polynomial sample spaces exist for appropriate parameters is the content of
the following theorem.

Theorem 5.1. Suppose n = 2m − 1 and t = 2e. Then there exists a symmet-
ric probability space Ω of size (n + 1)e and t-wise independent random variables
y1, y2, . . . , yn over Ω, each of which takes the values 0 and 1 with equal probability.

The above theorem can be proved by constructing an orthogonal array
OA2e(m−2) (2e, n, 2). Orthogonal arrays with these parameters can be constructed
from BCH codes with designed distance 2e+ 1 as explained in [2].

While this method is simple and powerful, it does not extend to the cases where
f(n)-wise independence of the random variables is needed, where f(n) is an increas-
ing (however small the growth rate may be) function of n, as shown by the following
theorem. This fact was first observed by Chor et al in [13].

Theorem 5.2 ([13]). The size of the sample space constructed in Theorem 5.1 is
asymptotically optimal and hence the size of a sample space with n t-wise indepen-
dent non-trivial random variables can be polynomial in n only when t is a constant.

The proof is a straightforward application of Rao bounds (see [36]) for orthog-
onal arrays and can be found in [2] and [13].

6 Authentication Without Secrecy

Authentication codes were invented in 1974 by Gilbert, MacWilliams and Sloane
[19] and have been extensively studied in recent years. The general theory of uncon-
ditional authentication was developed by Simmons (see e.g. [43]). In this section,
we will give a brief review of some relevant known results and explain the relevance
of orthogonal arrays in this context. For a general survey on authentication, the
reader is referred to [44].

In the usual model for authentication, there are three participants: Alice, Bob,
and an opponent (Oscar). Alice wants to communicate some information to Bob
using a public communication channel. The purpose of authentication code is to
protect the integrity of the information. That is, when Bob receives a message
from Alice, he wants to be sure that the message was really sent by Alice and was
not tampered with. However, Oscar has the ability to introduce messages into the
channel and/or to modify existing messages. When Oscar places a (new) message
into the channel, this is called impersonation. When Oscar sees a message m and
changes it to a message m′ �= m, this is called substitution.

We will use the following notation. An authentication code without secrecy is a
four-tuple (S,A,K, E), defined as follows:

1. S is a finite set of source states (a source state is analogous to a plaintext).
Let | S |= k.

2. A is a finite set of authenticators. Let | A |= l.

3. K is a finite set of keys.

4. For each K ∈ K, there is an authentication rule eK ∈ E . Each eK : S → A.

Alice and Bob will follow the following protocol. First, they jointly choose a
secret key K ∈ K. At a later time, Suppose Alice wants to communicate a source
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state s ∈ S to Bob. Alice uses the authentication rule eK to produce the authen-
ticator a = eK(s). The message m = (s, a) is sent over the channel. When Bob
receives m, he verifies that a = eK(s) to authenticate the source state s. Since each
authentication rule is a function from S to A, we can represent an authentication
code by an |E| × |S| matrix, where the rows are indexed by authentication rules,
the columns are indexed by source states, and then entry in row e and column s is
e(s). We call this matrix the authentication matrix

When Oscar performs impersonation or substitution, his goal is to have his
bogus message m′ = (s′, a′) accepted as authentic by Bob, thus misleading Bob as
to the state of the source. That is, if e is the authentication rule being used (which
is not known to Oscar), then he is hoping that a′ = e(s′).

We assume that there is some probability distribution on S, which is known to
all the participants. Given this probability distribution, Alice and Bob will choose a
probability distribution for E , called an authentication strategy. Once Alice and Bob
have chosen their authentication strategy, it is possible to compute, for i = 0, 1, a
deception probability denoted by Pdi , which is the probability that Oscar can deceive
Bob by impersonation and substitution, respectively. In computing the deception
probabilities, it is assumed that Oscar is using an optimal strategy.

It is not difficult to show that Pd0 ≥ 1/|A| [43] and Pd1 ≥ 1/|A| as well [47].
We are not only interested in minimizing the deception probabilities but also in
minimizing the number of authentication rules, as this determines the amount of
information to be exchanged between Alice and Bob in a secure fashion before they
use the authentication code. Authentication codes (without secrecy) with minimum
possible deception probabilities and the minimum number of encoding rules have
been shown to be equivalent to orthogonal arrays by Stinson [48]. In the following
result, the first part deals with codes in which k ≤ l+1, while the second part deals
with codes in which k ≥ l + 1.

Theorem 6.1 ([48]). Suppose we have an authentication code without secrecy for
k source states and having l authenticators, in which Pd0 = Pd1 = 1/l. Then

1. | E |≥ l2, and equality occurs if and only if the authentication matrix is an
orthogonal array OA(2, k, l) (with λ = 1) and the authentication rules are
used with equal probability;

2. | E |≥ k(l−1)+1, and equality occurs if and only if the authentication matrix
is an orthogonal array OAλ(2, k, l) where

λ =
k(l − 1) + 1

l2
,

and the authentication rules are used with equal probability.

7 Universal Hash Functions

Universal classes of hash functions were introduced by Carter and Wegman [11],
and were studied further by Sarwate [38] and by Wegman and Carter [53].
Several applications of universal hash functions were discussed in [11] and [53]. The
applications include complexity theory, randomized algorithms, associative memory,
cryptography and authentication.

Let A and B be finite sets, and denote a = |A| and b = |B|. We will assume
that a ≥ b. A function h : A → B will be termed a hash function. A finite set H of
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hash functions is strongly − universal2 (or SU2) if for every x1, x2 ∈ A (x1 �= x2)
and for every y1, y2 ∈ B,

|{h ∈ H : h(x1) = y1, h(x2) = y2}| = |H |/|B|2.

For a motivation of this definition see [53]. For practical applications, it is also
important that |H | is small. This is because log2 |H | bits are needed to specify
a hash function from the family. It is fairly straightforward to show that strongly
universal hash functions are equivalent to orthogonal arrays. The following theorem
can be found in [51].

Theorem 7.1. If there exists an OAλ(2, k, n), then there exists an SU2 class H of
hash functions from A to B, where |A| = k, |B| = n and |H | = λn2. Conversely,
if there exists an SU2 class H of hash functions from A to B, where a = |A| and
b = |B|, then there exists an OAλ(2, k, n), where n = b, k = a and λ = |H |/n2.

This theorem helps in establishing lower bounds on the number of hash func-
tions and in constructing classes of hash functions which meet these bounds. It is
straightforward to extend the definition and the theorem to SUt class of universal
hash functions.

8 Threshold Schemes

In a bank, there is a vault which must be opened every day. The bank employs
three senior tellers; but it is not desirable to entrust the combination to any one
person. Hence, we want to design a system whereby any two of the three senior
tellers can gain access to the vault, but no individual can do so. This problem can
be solved by means of a threshold scheme.

Threshold schemes are actually a special case of secret sharing schemes. For an
excellent survey of secret sharing schemes, the reader is referred to [49]. Thresh-
old schemes were first described by Shamir [42] and Blakley [9] in 1979. Blakley’s
solution uses finite geometries, while Shamir’s scheme is based on polynomial inter-
polation. Since then many constructions have been given for threshold schemes.

Informally a (t, w)-threshold scheme is a method of sharing a secret key K among
a finite set P of w participants, in such a way that any t participants can compute the
value of K, but no group of t−1 (or fewer) participants can do so. The value of K is
chosen by a special participant called the dealer. The dealer is denoted by D and we
assume D �∈ P . When D wants to share the key K among the participants in P , he
gives each participant some partial information called a share. The shares should be
distributed secretly, so no participant knows the share given to another participant.

At a later time, a subset of participants B ⊆ P will pool their shares in an
attempt to compute the secret key K. If | B |≥ t, then they should be able to com-
pute the value of K as a function of the shares they collectively hold; if | B |< t,
then they should not be able to compute K. In the example described above, we
desire a (2, 3)-threshold scheme.

Often, we desire not only that an unauthorized subset of participants should be
unable to compute the value of K by pooling their shares, but also they should be
unable to determine anything about the value of K. Such a threshold scheme is
called a perfect threshold scheme. Here, we will be concerned only about perfect
threshold schemes.

We will use the following notation. Let P = {Pi : 1 ≤ i ≤ w} be the set of
participants. K is the key set (i.e., the set of all possible keys); and S is the share
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set (i.e., the set of all possible shares). It is well known that in any perfect thresh-
old scheme | K |≤| S |. The schemes in which equality is attained are called ideal
threshold schemes.

Orthogonal arrays come into picture once again by means of the following theo-
rem due to E. Dawson, E.S. Mahmoodian and Alan Rahilly [16]. This theorem was
first proved by Keith Martin in his Ph.D. thesis in 1992; However, only after several
years it appeared in a paper by Jackson and Martin [26].

Theorem 8.1 ([16],[26]). An ideal (t, w) threshold scheme with | K |= v exists if
and only if an OA(t, w + 1, v) exists.

The construction of the threshold scheme starting from the orthogonal array
proceeds as follows. The first column of the OA corresponds to the dealer and the
remaining w columns correspond to the w participants. To distribute a specific key
K, the dealer selects a random row of the OA such that K appears in the first
column and gives out the remaining w elements of the row as the shares. When
t participants later pool their shares, the collective information will determine an
unique row of the OA (as λ = 1) and hence they can compute K as the value of
the first element in the row.

Can a group of t− 1 participants compute K ? Any possible value of the secret
along with the actual shares of these t − 1 participants determine a unique row of
the OA. Hence, no value of the secret can be ruled out. Moreover, it is clear that
the t− 1 participants can obtain no information about the secret.

9 Perfect Local Randomizers

A (k, n) sequence generator stretches a binary random seed of length k to a binary
pseudorandom sequence of length n. A (k, n) sequence generator is a (k, n, e) perfect
local randomizer (PLR) if every subset of e of the n binary output random variables
is a set of e independent and balanced random variables. The concept of perfect
local randomizers was introduced and studied by Maurer and Massey [30]. They
suggest the use of perfect local randomizers in key scheduling schemes where a small
secret key must be stretched to a long key. It is obvious that a (k, n, e) perfect local
randomizer is equivalent to an OA2k−e (e, n, 2). This equivalence was observed by
Maurer and Massey. Thus perfect local randomizers are really orthogonal arrays in
disguise. Hence, we will not further elaborate on them.

10 Concluding Remarks

In this article, we surveyed several applications of orthogonal arrays to computer
science. The diverse areas from where the applications are drawn attests to the
ubiquitous nature of orthogonal arrays.

Although, we have surveyed several applications of orthogonal arrays, our sur-
vey is by no means complete due to lack of space. We briefly mention some other
applications. Orthogonal arrays are used in the decorrelation theory of block ciphers
(see [52]) and in the construction of almost k-wise independent sample spaces (see
[28]). They are also used in ramp schemes, which are generalizations of threshold
schemes (see [25]). Ordered orthogonal arrays are a generalization of orthogonal
arrays and they are used in constructions of (t,m, s) nets (see [33]).
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Orthogonal arrays are closely related to correlation-immune and resilient func-
tions as well (see [20]). These functions are of fundamental importance in their
own right and have a multitude of applications. Correlation-immune functions are
used in stream ciphers as combining functions for running-key generators that are
resistant to correlation attacks (see [37]). Resilient functions are used in the design
of S-Boxes in block ciphers. Yet another application of resilient functions involves
renewing a partially leaked cryptographic key, which is particularly relevant in the
setting of quantum cryptography (see [6]). Finally resilient functions are also used
in the generation of shared random strings in the presence of faulty processors. The
last two applications were mentioned in [7] and [13].
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