
Group Mutual Exclusion in Linear Time and Space

Yuan He1 K. Gopalakrishnan2 Eli Gafni 1

1Department of Computer Science
University of California, Los Angeles

2Department of Computer Science
East Carolina University

ICDCN, 2016

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 1



Structure of a process in Mutual Exclusion Problem

1: repeat
2: Remainder Section
3: Entry Section
4: Critical Section
5: Exit Section
6: forever

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 2



Mutual Exclusion Problem

Mutual Exclusion Problem

A collection of asynchronous processes
Need to ensure that processes access the resource exclusively in Critical
Section
Develop code for Entry Section and Exit Section to guarantee the
mutual exclusion property

Mutual Exclusion property

No two processes can be in the Critical Section at the same time

Dijkstra introduced the problem in 1965

Huge body of literature on this classical problem.

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 3



Motivation for Group Mutual Exclusion (GME) Problem

A common prayer room allocated to all students.

Students use the room on a first come first served basis.

Students of different faith can not use the room to pray concurrently.

Students of same faith can pray concurrently.

A student cannot overtake another waiting student just because a
member of her faith is currently praying.

Yet, a student should be able to pray without waiting if only others of
same denomination are present.

Students can change their religion between different trips to the
room, if they want!

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 4



Group Mutual Exclusion (GME) Problem

Introduced by Joung in 2000

A process picks up a session number when it leaves the Remainder
Section (the session can be different in different invocations )

Two processes are friendly processes if they have the same session
number

Friendly processes can be in the Critical Section at the same time

Processes with different session numbers are called conflicting
processes

P1-Mutual Exclusion: No two conflicting processes can be in the
Critical Section at the same time

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 5



Structure of a process in GME Problem

1: repeat
2: Remainder Section

Session := mysession
3: Entry Section
4: Critical Section
5: Exit Section
6: forever

An execution of the last three sections is called an
invocation.

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 6



Additional Desirable Properties

P2 - Starvation Freedom: Any process entering the Entry Section is
guaranteed to enter the Critical Section eventually

P3 - Concurrent Entry: In the absence of conflicting processes, a
process is guaranteed to enter the Critical Section within a bounded
number of its own steps

P4 - Bounded Exit: A process in the Exit Section is guaranteed to
leave it within a bounded number of its own steps

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 7



Additional Desirable Properties (cont.)

To be fair, we want to allow processes enter the Critical Section in
the same order in which they made requests.

Entry Section

Doorway

Waiting Room

P5 - First-Come-First-Served (FCFS): If process i finished the
doorway before process j started the doorway and they are conflicting
processes, then process j must not enter the Critical Section before
process i

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 8



Additional Desirable Properties (cont.)

Deadlock Freedom: Deadlocks cannot occur in the system

Deadlock: One or more processes are trying forever to enter the
Critical Section, but no process ever does so

Starvation Freedom ⇒ Deadlock Freedom (converse is not true)

Deadlock Freedom + FCFS ⇒ Starvation Freedom

GME Problem: Develop solution satisfying all five properties.

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 9



Model of Computation

A system consisting of N processes and a set of shared variables

Processes perform one of three actions

Perform some local computation
Read a shared variable
Write a shared variable

Processes takes actions asynchronously

An unbounded number of other processes’ actions can be executed
between two successive actions of a process

All processes are live

If a process has not terminated, it will eventually execute its next step

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 10



Memory Models

Two common memory models

Distributed Shared Memory (DSM) model
Cache-Coherent (CC) model

Focus on the CC model

All shared variables are located in a global memory module
Each processor has its private cache
When a process wants to write a shared variable

It writes the shared variable in the global memory
The Hardware protocol immediately invalidates the cached-values of
this shared variable in other processors

When a process wants to read a shared variable

Check whether it is available in its local cache
If it is in the cache, then reads it
If it is not in the cache, then accesses the global memory, and migrates
it to local cache and then reads it

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 11



Cache-Coherent Model

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 12



Time and Space Complexity

Accessing the global memory requires more time than accessing the
local cache

Requires interconnection network traffic

Therefore, for time complexity, we only count the number of global
memory accesses. This is called the Remote Memory Reference
(RMR) complexity

For space complexity, we only count the space of the global memory
(shared space complexity)

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 13



Lamport’s Bakery Algorithm

Lamport developed the Bakery Algorithm in 1974

Every process picks a token number larger than that of others.

Process with the smallest token number enters the CS.

Waits until other process has picked a number before comparing.

Ties resolved using process id.

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 14



Generalizing Lamports Bakery Algorithm to GME

Additionally, use a shared array for session numbers.

Let processes in the Remainder Section have the session number of 0

A process does not wait on another process if it has the same session
number. This ensures the concurrent entry property.

shared variables:
Session: array[1..N] of integer, initially all 0
Choosing: array[1..N] of boolean, initially all false
Token: array[1..N] of integer, initially all 0

private variables:
mysession: integer, initially 0

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 15



GME Bakery Algorithm

1: repeat
2: REMAINDER SECTION

3: Choosing[i ] := true
4: Session[i ] :=mysession
5: Token[i ] := 1+ max of other token numbers
6: Choosing[i ] := false

7: for j := 1 to N do
8: await ((Choosing[j ] = false) ∨ (Session[j ] ∈ {0,mysession}))
9: await

(((Token[i ], i) < (Token[j ], j)) ∨ (Session[j ] ∈ {0,mysession}))
10: end for

11: CRITICAL SECTION

12: Token[i ] := 0
13: Session[i ] := 0
14: forever

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 16



Proof of Correctness

Mutual Exclusion

A process with a larger token number is forced to wait on a conflicting
process with a smaller token number. So no two conflicting processes
can be in the Critical Section at the same time.

Concurrent Entry

Process i does not wait on process j if it has the same session number
as process j

Bounded Exit

Exit Section is made up of two simple write instructions

FCFS

If process i doorway-precedes process j and they are conflicting
processes, then process j will have a larger token number than process
i . Therefore, process j can not enter the Critical Section before process
i .

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 17



Proof of Correctness (cont.)

Deadlock Freedom
No process can wait at line 8 forever

await ((Choosing[j ] = false ) ∨ (Session[j ] ∈ {0,mysession}))
All active processes must wait on line 9.

await (((Token[i ], i) < (Token[j ], j)) ∨ (Session[j ] ∈ {0,mysession}))
Some process p has that has the smallest token number and that
process will enter the Critical Section, contradiction!

Starvation Freedom

Deadlock Freedom + FCFS ⇒ Starvation Freedom

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 18



Previous attempts

Takamura and Igarashi attempted to generalize Lamports Bakery
Algorithm and developed three algorithms.

First algorithm: Simple, but does not satisfy the starvation freedom
property.
Second algorithm: Satisfies starvation freedom, but does not satisfy the
concurrent entry property and bounded exit property, despite being
complex.
Third algorithm: Provides more concurrency than their second
algorithm but still does not satisfy the properties of concurrent entry
and bounded exit and remains complex.

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 19



Pros and Cons

Advantages

Satisfy all five properties

Simple and elegant

Linear time and linear space

Disadvantages

The shared variable Token will grow in an unbounded manner

How to overcome this disadvantage, while maintaining all advantages?

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 20



Flaw in the literature

In 2001, Hadzilacos presented the first FCFS algorithm with bounded
registers for GME.

Hadzilacos claimed his algorithm has O(N) RMR Complexity and
O(N2) shared space complexity.

He left it as an open problem to reduce the space complexity.

His algorithm is a modular composition of a FCFS algorithm and an
ME algorithm.

The ME algorithm used is Burns-Lamport 1-bit algorithm.

We show that Burns-Lamport algorithm actually has O(N2) RMR
Complexity.

This invalidates Hadzilaco’s claim.

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 21



Flaw in the literature (cont.)

In 2003, Jayanti et. al. came up with a clever modification to
Hadzilacos’s algorithm.

This reduced the space complexity to O(N).

In view of Hadzilacos’s erroneous claim, this algorithm was deemed to
be of linear time and space.

However, Jayanti retains the idea of modular composition and
moreover uses Burns-Lamport ME algorithm.

So, Jayanti’s algorithm is also of O(N2) RMR Complexity.

So, the problem of developing a linear time and linear space algorithm
for GME with bounded registers is actually still open.

We next present such an algorithm.

It is a generalization of the elegant Black-White Bakery Algorithm
developed by Gadi Taubenfeld.

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 22



Idea of Black-White Bakery Algorithm

The token: token-color and token-number

Token-color: The same color as the current GlobalColor

Token-number: Larger than token-numbers of all processes with the
same token-color

Waiting room: Waits until it has priority over all other processes and
then enters the Critical Section

If two processes have the same token-color, the process with the
smaller token-number has priority
If two processes have different token-colors, the process whose
token-color is different from the GlobalColor has priority

Exit Section: Updates the GlobalColor to be the opposite of its own
token-color

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 23



Sketch of proof of correctness

Processes whose token-colors are same with the GlobalColor will wait
until processes whose token-colors are different finish their current
invocation

Mutual Exclusion

Processes with different token-colors are mutually excluded by the
token-color
Processes with the same token-color are mutually excluded by the
token-number

Also satisfies the properties of starvation freedom, bounded exit and
FCFS

The maximum value of token-number is N, where N is the total
number of processes

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 24



Bounding the Token-number

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 25



Generalizing Black-White Bakery Algorithm to solve GME

Token has three parts: token-color, token-number and
session-number.

Token-color: Selects the token-color as in the Black-White Bakery
Algorithm

Token-number: Choose the maximum of token-number of conflicting
process with the same token-color and then add 1.

This strategy helps in controlling the growth of token-numbers

To ensure concurrent entry, processes always check whether the other
process requests the same session in all busy-wait loops.

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 26



Generalizing Black-White Bakery Algorithm to solve GME
(cont.)

In GME, processes with different token-colors can be in the Critical
Section at the same time by the concurrent entry property, which is
not true in the original Black-White Bakery Algorithm

This makes it difficult to ensure the mutual exclusion property

The process updates the GlobalColor as before, but only if its
token-number is greater than 1 and there is no active process (not
necessarily conflicting process) with the opposite token-color.

This new color updating mechanism in the Exit Section is crucial in
proving the mutual exclusion property.

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 27



Generalizing Black-White Bakery Algorithm to solve GME
(cont.)

Other properties also hold good.

The algorithm has O(N) RMR complexity and O(N) shared space
complexity

The value of token-number can not grow beyond N + 1. So, we are
only using bounded registers.

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 28



Conclusions

We made three contributions.

1 Presented a linear time and linear space GME algorithm satisfying all
five properties using unbounded registers. It is a simple generalization
of Lamport’s Bakery Algorithm.

2 We proved that the bounded register algorithms by Hadzilacos and
Jayanti et al. are actually of Θ(N2) RMR complexity.

3 Presented a linear time and linear space GME algorithm satisfying all
five properties using bounded registers. It is a non-trivial
generalization of Taubenfeld’s Black-White Bakery Algorithm.

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 29



Open Problems

Is it possible to bound the registers by a constant?

Is it possible to ensure additional properties such as FIFE, Strong
Concurrent Entering Property?

Is it possible to devise a GME algorithm that has constant RMR
complexity, perhaps by using more complex synchronization primitives
such as Fetch&Add?

Group Mutual Exclusion in Linear Time and Space Yuan He, K. Gopalakrishnan, Eli Gafni ICDCN, 2016 30


