Group Mutual Exclusion in Linear Time and Space

Yuan He1 K. Gopalakrishnan2 Eli Gafni 1

1Department of Computer Science
University of California, Los Angeles

2Department of Computer Science
East Carolina University

ICDCN, 2016
Structure of a process in Mutual Exclusion Problem

1: repeat
2: Remainder Section
3: Entry Section
4: Critical Section
5: Exit Section
6: forever
Mutual Exclusion Problem

- Mutual Exclusion Problem
 - A collection of asynchronous processes
 - Need to ensure that processes access the resource exclusively in Critical Section
 - Develop code for Entry Section and Exit Section to guarantee the mutual exclusion property

- Mutual Exclusion property
 - No two processes can be in the Critical Section at the same time

- Dijkstra introduced the problem in 1965

- Huge body of literature on this classical problem.
A common prayer room allocated to all students.

Students use the room on a first come first served basis.

Students of different faith can not use the room to pray concurrently.

Students of same faith can pray concurrently.

A student cannot overtake another waiting student just because a member of her faith is currently praying.

Yet, a student should be able to pray without waiting if only others of same denomination are present.

Students can change their religion between different trips to the room, if they want!
Group Mutual Exclusion (GME) Problem

- Introduced by Joung in 2000
- A process picks up a session number when it leaves the Remainder Section (the session can be different in different invocations)
- Two processes are **friendly** processes if they have the same session number
- Friendly processes can be in the Critical Section at the same time
- Processes with different session numbers are called **conflicting** processes
- **P1-Mutual Exclusion**: No two conflicting processes can be in the Critical Section at the same time
1: repeat
2: Remainder Section
 \textit{Session} := mysession
3: Entry Section
4: Critical Section
5: Exit Section
6: forever

- An execution of the last three sections is called an invocation.
Additional Desirable Properties

- **P2 - Starvation Freedom**: Any process entering the Entry Section is guaranteed to enter the Critical Section eventually.
- **P3 - Concurrent Entry**: In the absence of conflicting processes, a process is guaranteed to enter the Critical Section within a bounded number of its own steps.
- **P4 - Bounded Exit**: A process in the Exit Section is guaranteed to leave it within a bounded number of its own steps.
To be fair, we want to allow processes enter the Critical Section in the same order in which they made requests.

Entry Section
- Doorway
- Waiting Room

P5 - First-Come-First-Served (FCFS): If process i finished the doorway before process j started the doorway and they are conflicting processes, then process j must not enter the Critical Section before process i.
Additional Desirable Properties (cont.)

- **Deadlock Freedom**: Deadlocks cannot occur in the system
 - Deadlock: One or more processes are trying forever to enter the Critical Section, but no process ever does so
- **Starvation Freedom** \Rightarrow **Deadlock Freedom** (converse is not true)
- **Deadlock Freedom** $+$ **FCFS** \Rightarrow **Starvation Freedom**
- **GME Problem**: Develop solution satisfying all five properties.
A system consisting of N processes and a set of shared variables

Processes perform one of three actions
- Perform some local computation
- Read a shared variable
- Write a shared variable

Processes takes actions asynchronously
- An unbounded number of other processes’ actions can be executed between two successive actions of a process

All processes are live
- If a process has not terminated, it will eventually execute its next step
Two common memory models
- Distributed Shared Memory (DSM) model
- Cache-Coherent (CC) model

Focus on the CC model
- All shared variables are located in a global memory module
- Each processor has its private cache
- When a process wants to write a shared variable
 - It writes the shared variable in the global memory
 - The Hardware protocol immediately invalidates the cached-values of this shared variable in other processors
- When a process wants to read a shared variable
 - Check whether it is available in its local cache
 - If it is in the cache, then reads it
 - If it is not in the cache, then accesses the global memory, and migrates it to local cache and then reads it
Cache-Coherent Model

P_1

Cache

P_2

Cache

P_3

Cache

P_N

Cache

Global Memory
Time and Space Complexity

- Accessing the global memory requires more time than accessing the local cache
 - Requires interconnection network traffic
- Therefore, for **time complexity**, we only count the number of global memory accesses. This is called the Remote Memory Reference (RMR) complexity
- For **space complexity**, we only count the space of the global memory (shared space complexity)
Lamport’s Bakery Algorithm

- Lamport developed the Bakery Algorithm in 1974
- Every process picks a token number larger than that of others.
- Process with the smallest token number enters the CS.
- Waits until other process has picked a number before comparing.
- Ties resolved using process id.
Additionally, use a shared array for session numbers. Let processes in the Remainder Section have the session number of 0. A process does not wait on another process if it has the same session number. This ensures the concurrent entry property.

shared variables:
- **Session:** array\[1..N\] of integer, initially all 0
- **Choosing:** array\[1..N\] of boolean, initially all false
- **Token:** array\[1..N\] of integer, initially all 0

private variables:
- **mysession:** integer, initially 0
GME Bakery Algorithm

1: repeat
2: REMAINDER SECTION
3: \(Choosing[i] := \text{true} \)
4: \(Session[i] := \text{mysession} \)
5: \(Token[i] := 1 + \max \text{ of other token numbers} \)
6: \(Choosing[i] := \text{false} \)
7: for \(j := 1 \) to \(N \) do
8: \hspace{1em} await ((\(Choosing[j] = \text{false} \)) \lor (\(Session[j] \in \{0, \text{mysession}\} \))
9: \hspace{1em} await (((\(Token[i], i \)) \lt (\(Token[j], j \)) \lor (\(Session[j] \in \{0, \text{mysession}\} \)))
10: end for
11: CRITICAL SECTION
12: \(Token[i] := 0 \)
13: \(Session[i] := 0 \)
14: forever
Proof of Correctness

- **Mutual Exclusion**
 - A process with a larger token number is forced to wait on a conflicting process with a smaller token number. So no two conflicting processes can be in the Critical Section at the same time.

- **Concurrent Entry**
 - Process i does not wait on process j if it has the same session number as process j.

- **Bounded Exit**
 - Exit Section is made up of two simple write instructions.

- **FCFS**
 - If process i doorway-precedes process j and they are conflicting processes, then process j will have a larger token number than process i. Therefore, process j can not enter the Critical Section before process i.
Proof of Correctness (cont.)

- **Deadlock Freedom**
 - No process can wait at line 8 forever
 - `await ((Choosing[j] = false) ∨ (Session[j] ∈ {0,mysession}))`
 - All active processes must wait on line 9.
 - `await (((Token[i], i) < (Token[j], j)) ∨ (Session[j] ∈ {0,mysession}))`
 - Some process \(p \) has that has the smallest token number and that process will enter the Critical Section, contradiction!

- **Starvation Freedom**
 - Deadlock Freedom + FCFS \(\Rightarrow \) Starvation Freedom
Takamura and Igarashi attempted to generalize Lamport's Bakery Algorithm and developed three algorithms.

- First algorithm: Simple, but does not satisfy the starvation freedom property.
- Second algorithm: Satisfies starvation freedom, but does not satisfy the concurrent entry property and bounded exit property, despite being complex.
- Third algorithm: Provides more concurrency than their second algorithm but still does not satisfy the properties of concurrent entry and bounded exit and remains complex.
Pros and Cons

Advantages

- Satisfy all five properties
- Simple and elegant
- Linear time and linear space

Disadvantages

The shared variable *Token* will grow in an unbounded manner

- How to overcome this disadvantage, while maintaining all advantages?
In 2001, Hadzilacos presented the first FCFS algorithm with bounded registers for GME.

Hadzilacos claimed his algorithm has $O(N)$ RMR Complexity and $O(N^2)$ shared space complexity.

He left it as an open problem to reduce the space complexity.

His algorithm is a modular composition of a FCFS algorithm and an ME algorithm.

The ME algorithm used is Burns-Lamport 1-bit algorithm.

We show that Burns-Lamport algorithm actually has $O(N^2)$ RMR Complexity.

This invalidates Hadzilaco’s claim.
In 2003, Jayanti et al. came up with a clever modification to Hadzilacos’s algorithm. This reduced the space complexity to $O(N)$. In view of Hadzilacos’s erroneous claim, this algorithm was deemed to be of linear time and space. However, Jayanti retains the idea of modular composition and moreover uses Burns-Lamport ME algorithm. So, Jayanti’s algorithm is also of $O(N^2)$ RMR Complexity. So, the problem of developing a linear time and linear space algorithm for GME with bounded registers is actually still open. We next present such an algorithm. It is a generalization of the elegant Black-White Bakery Algorithm developed by Gadi Taubenfeld.
Idea of Black-White Bakery Algorithm

- The token: token-color and token-number
- Token-color: The same color as the current GlobalColor
- Token-number: Larger than token-numbers of all processes with the same token-color
- Waiting room: Waits until it has priority over all other processes and then enters the Critical Section
 - If two processes have the same token-color, the process with the smaller token-number has priority
 - If two processes have different token-colors, the process whose token-color is different from the GlobalColor has priority
- Exit Section: Updates the GlobalColor to be the opposite of its own token-color
Processes whose token-colors are same with the GlobalColor will wait until processes whose token-colors are different finish their current invocation.

Mutual Exclusion
- Processes with different token-colors are mutually excluded by the token-color.
- Processes with the same token-color are mutually excluded by the token-number.

Also satisfies the properties of starvation freedom, bounded exit and FCFS.

The maximum value of token-number is N, where N is the total number of processes.
Bounding the Token-number

![Diagram](image_url)

GlobalColor: ●

Token-color:

P₁
●

P₂
●

P₃
●

...

PN
●

Token-number:

1

2

3

N

GlobalColor: ○

Token-color:

P₁
○

P₂
●

P₃
●

...

PN
●

Token-number:

1

2

3

N
Token has three parts: token-color, token-number and session-number.

Token-color: Selects the token-color as in the Black-White Bakery Algorithm

Token-number: Choose the maximum of token-number of conflicting process with the same token-color and then add 1.

This strategy helps in controlling the growth of token-numbers

To ensure concurrent entry, processes always check whether the other process requests the same session in all busy-wait loops.
In GME, processes with different token-colors can be in the Critical Section at the same time by the concurrent entry property, which is not true in the original Black-White Bakery Algorithm.

This makes it difficult to ensure the mutual exclusion property.

The process updates the *GlobalColor* as before, but only if its token-number is greater than 1 and there is no active process (not necessarily conflicting process) with the opposite token-color.

This new color updating mechanism in the Exit Section is crucial in proving the mutual exclusion property.
Other properties also hold good.

The algorithm has $O(N)$ RMR complexity and $O(N)$ shared space complexity.

The value of token-number can not grow beyond $N + 1$. So, we are only using bounded registers.
Conclusions

We made three contributions.

1. Presented a linear time and linear space GME algorithm satisfying all five properties using unbounded registers. It is a simple generalization of Lamport’s Bakery Algorithm.

2. We proved that the bounded register algorithms by Hadzilacos and Jayanti et al. are actually of $\Theta(N^2)$ RMR complexity.

3. Presented a linear time and linear space GME algorithm satisfying all five properties using bounded registers. It is a non-trivial generalization of Taubenfeld’s Black-White Bakery Algorithm.
Open Problems

- Is it possible to bound the registers by a constant?
- Is it possible to ensure additional properties such as FIFE, Strong Concurrent Entering Property?
- Is it possible to devise a GME algorithm that has constant RMR complexity, perhaps by using more complex synchronization primitives such as Fetch&Add?