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Abstract. For elliptic curve based cryptosystems, the discrete loga-
rithm problem must be hard to solve. But even when this is true from
a mathematical point of view, side-channel attacks could be used to re-
veal information about the key if proper countermeasures are not used.
In this paper, we study the difficulty of the discrete logarithm problem
when partial information about the key is revealed by side channel at-
tacks. We provide algorithms to solve the discrete logarithm problem for
generic groups with partial knowledge of the key which are considerably
better than using a square-root attack on the whole key or doing an
exhaustive search using the extra information, under two different sce-
narios. In the first scenario, we assume that a sequence of contiguous
bits of the key is revealed. In the second scenario, we assume that partial
information on the “Square and Multiply Chain” is revealed.

Keywords: Discrete Logarithm Problem, Generic Groups, Side Channel
Attacks.

1 Introduction

The discrete logarithm problem (DLP) is an important problem in modern
cryptography. The security of various cryptosystems and protocols (such as
Diffie-Hellman key exchange protocol, ElGamal cryptosystem, ElGamal signa-
ture scheme, DSA, cryptosystems and signature schemes based on elliptic and
hyperelliptic curves) relies on the presumed computational difficulty of solving
the discrete logarithm problem. For a survey of the discrete logarithm problem,
the reader is referred to [13].

However, even if the DLP is indeed difficult to solve, one has to take other
aspects into account in practical implementations. If proper countermeasures
are not used, side-channel attacks could be used to reveal partial information
about the key. In this paper, we address the problem of how to utilize the partial
information effectively when solving the DLP.
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When one wants to break a system based on DLP, one can of course, ignore
the partial information revealed by side channel attacks and simply use a generic
algorithm. Alternatively, one can use an exhaustive search using the partial
information made available to us. The primary question that we address in this
paper is whether we can do something in between? i.e., can we use the partial
information revealed by side channel attacks in an intelligent way to break the
system?

In some cases, side channel attacks could reveal a string of contiguous bits
of the secret key. In this situation, it is always possible to adapt Shank’s baby-
step giant-step algorithm [19] to perform the search in the remaining possible
keyspace; However the memory requirements could make this approach imprac-
tical. For example, if 100 bits remain to be identified, computing to the order of
250 group operations can be considered reasonable, but handling (and storing)
a table of 250 entries is much more problematic. To avoid this issue, we need
a different algorithm, not necessarily deterministic, which has a lower memory
requirement.

A number of papers address the question when a large number of observations
are available [6,11,12,9]. When only one observation is possible, probabilistic
algorithms are known, but they usually assumed that the known bitstring is
either in the most or the least significant bits of the key [15,16,23]. In Section 3,
we look at what happens when a contiguous sequence of bits is known somewhere
in the middle of the binary representation of the key.

In most cases, side channel attacks will reveal information on the square and
multiply chain (see the beginning of Section 4 for a definition), and not the
bitstring. Extracting the key from partial information on the square and multi-
ply chain requires different approaches than those used when some of the bits
are known. In this situation, no “fast” algorithm is known, no matter what
the memory requirement is, hence any “fast” algorithm can be considered an
improvement.

If uniform formulas are used for the group arithmetic (see [2,1] for example),
then a side channel attack will reveal the hamming weight of the key, but not the
position of the nonzero bits. If the hamming weight is low enough, fast algorithms
are available [22,3], although they can be slower than general searches if the
hamming weight is even moderately high. If the field arithmetic is not secured
as well, some parts of the square and multiply chain may also be leaked [24,21].

In that situation, no algorithm was known that could improve on the exhaus-
tive search from the partial information, or a search based solely on the hamming
weight (note that the two approaches are not compatible). In Section 4, we will
show how to significantly improve on the exhaustive search in this context.

2 Background

First, we define the discrete logarithm problem as follows: Let G be a cyclic
group of prime order p. Let g be a generator of G. Given β ∈ G, determine
α ∈ {0, 1, 2, . . . , p − 1} such that gα = β. Here, g and p are public information
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known to everybody. Although our description is in terms of a multiplicative
group, all of the arguments in this paper are essentially identical when applied
to additive groups (for example groups coming from elliptic curves).

It is also possible to define the DLP on groups whose order n is not a prime
number. However, one could then use the well known technique due to Pohlig
and Hellman [14], and reduce the problem to a number of DLPs in groups of
order p, where p runs through all the prime factors of n. Hence, without any loss
of generality, we will focus on the case when the order of the group is a prime
number.

2.1 Generic Algorithms for Solving DLP

In this paper, we only consider generic algorithms for solving the DLP. A generic
algorithm for solving the DLP is an algorithm that does not exploit the structure
of the underlying group in solving the DLP. As a consequence, this algorithm
could be used to solve the DLP in any group.

In a generic algorithm, we want to think of the group as though it is presented
by means of a black box. More specifically, each group element has a unique
encoding or labeling and we have an oracle (a black box) which is capable of
doing the following things:

– Given the encoding of two elements g and h of the group, the oracle can
compute their product g ∗ h, in unit time.

– Given the encoding of two elements g and h, the oracle can decide whether
g = h, in unit time.

– Given the encoding of an element g, the oracle can compute any given power
of g (including the inverse g−1), in time O(log p).

We also note that in some groups, for example those coming from elliptic curves,
the inverse operation can be performed in unit time. The time complexity of a
generic algorithm is determined by counting the number of times it needs access
to the black box.

There are a few well-known generic algorithms to solve the DLP. The baby-
step giant-step method due to Shanks [19] is a deterministic generic algorithm
that can solve the DLP in time O(p1/2 log p) using space O(p1/2 log p). This
algorithm is based on a time-memory trade off technique. The rho method due
to Pollard [15,16] is a probabilistic generic algorithm that can solve the DLP in
expected running time O(p1/2) (under certain assumptions) using only O(log p)
amount of space (requiring the storage of a constant number of group elements),
and is based on the birthday paradox. The space efficiency of this algorithm
makes it more attractive in comparison to Shanks’ method. For an excellent
survey of the state of the art in these two methods, the reader is referred to [23].

Victor Shoup [20] established a lower bound of Ω(p1/2) on the time complexity
of any probabilistic (and therefore on any deterministic) generic algorithm that
can solve the DLP. Hence, both the baby-step giant-step method and the rho
method are essentially optimal algorithms with respect to their time complexity
and can only be improved in terms of constant factors.
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It should be noted that the fastest known algorithms that can solve the DLP
for most elliptic curve groups are generic algorithms and thus of exponential
complexity (note that the size of the input is log p, whereas the algorithm has
O(p1/2) complexity). In contrast, subexponential algorithms exist for the fac-
toring problem which is the basis for the RSA cryptosystem. As a consequence,
cryptographers believe that elliptic curve based cryptosystems can provide bet-
ter security (provided the curves and the parameters are chosen appropriately).
This is the reason for increasing interest in elliptic curve based cryptography.

2.2 Side Channel Attacks

A side channel attack (on a cryptosystem or a signature scheme) is an attack
that focuses on the physical implementation of the algorithm as opposed to the
specification of the algorithm. By observing an implementation being executed,
an attacker can make correlations between the events that occur in the processor
and the data being processed. The first well known versions of side channel attack
were based on timing [7] and power [8] analysis (and more recently EM analysis
[4,17]).

In timing analysis based attacks, an attacker uses the execution timings to
infer about the flow of control and thus about the key. For example, an imple-
mentation might take longer to run if a conditional branch is taken than if it
is not taken. If the branch is taken or not depending on a bit of the secret key,
then the attacker might work out the corresponding bit of the secret key.

In power analysis based attacks, an attacker uses the amount of power con-
sumed by a processor to infer what operations are being performed and thus
about the key (EM based attacks use a similar approach on the electromagnetic
trace produced by the processor). For example, a multiplication operation would
have a distinct power usage profile and will differ considerably from the power
usage profile of a squaring operation. The attacker can then use that knowledge
to break the system.

The interesting thing about side channel attacks is that they do not contra-
dict the mathematical security provided by the system (even assuming the un-
derlying computational problems are provably difficult to solve) but they simply
bypass it.

3 Scenario I – Contiguous Bits of the Key Is Revealed

In this section, we deal with the scenario where the partial information revealed
is a sequence of contiguous bits of the key.

Let G be a cyclic group of prime order p and let g be a generator of G.
Given β ∈ G, recall that the Discrete Logarithm Problem (DLP) is to determine
α ∈ {0, 1, 2, . . . , p − 1} such that gα = β. In this section, we assume that a
sequence of contiguous bits of α is revealed by side channel attacks. Although a
variation of the baby-step giant-step method is always possible, we are looking
for an algorithm with memory requirements similar to the rho method, i.e. of
size O(log p).
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There are three possible cases to consider; the sequence of contiguous bits
known may be in the left part, right part or somewhere in the middle (i.e.
located away from the extremities, but not necessarily centered). The first two
cases are known results and can be found in Appendices A and B. The third
case does not appear to have received as much attention, and a new method to
approach it is presented below.

3.1 Case III – Middle Part

Let us assume that we have some positive integers M and N such that we can
write α in the form

α = α1MN + α2M + α3 (1)

where 0 ≤ α2 < N is known and with 0 ≤ α3 < M . We also assume that
0 ≤ α1 < p/MN , i.e. that α is reduced modulo p. Note that α1 is really bounded
by

⌊
p−α2M

MN

⌋
, but the error introduced is insignificant (a difference of at most

1 on the bound, which vanishes in the O-notation), and it makes the analysis
easier to read. In terms of exhaustive search, we have to search through a set
of size p/N (�(p − α2M)/N� to be exact), which requires O(p/N) calls to the
oracle, whereas a generic attack on the whole group would require O(p1/2) calls
to the oracle.

In practice we may be more interested in the case where M and N are powers
of 2 – i.e. where N = 2l2 and M = 2l3 , so the first l1 and the last l3 bits are
unknown (we assume that l1 + l2 + l3 is the bitlength of the key) – but the
arguments presented here will hold for any positive integers N and M .

For now, let us assume that we are given an integer r, 0 < r < p, such that
we can write rMN as kp + s with |s| < p/2. We will discuss how to choose r in
a few paragraphs. Multiplying both sides of Equation (1) by r, we get

rα = rα1MN + rα2M + rα3

= α1kp + sα1 + rα2M + rα3

= α1kp + rα2M + α′, (2)

where α′ = sα1 + rα3. Raising g to both sides of Equation (2), we get

gαr = gα1kp+rα2M+α′

(gα)r = (gp)α1k
grα2Mgα′

βr = grα2Mgα′
. (3)

Denoting
(
β × g−α2M

)r by β′, Equation (3) can be written in the form β′ =
gα′

. Note that β′ can be computed from β as r, α2, and M are known. We can
then view determining α′ as solving a DLP. When s is positive, α′ = α3r + α1s
must be in the interval

[
0, r(M − 1) + s

( p

MN
− 1

)]
,
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on which we can use Pollard’s kangaroo method. Similarly, if s is negative we
must consider the interval[

s
( p

MN
− 1

)
, r(M − 1)

]
.

In both cases we can restrict the value of α′ to an interval of length rM + |s| p
MN .

To minimize the cost of the kangaroo method, we must therefore choose r > 0
to minimize the value of

rM + |s| p

MN
(4)

under the condition s ≡ rMN mod p.
Although it is not possible in general to choose r (and s) such that (4) is of

the form O(p/N), some situations are more favorable than others.
A perfect example (although a rather unlikely one) occurs when working in

the bitstring of a Mersenne prime p = 2l − 1 (with N = 2l2 and M = 2l3), in
which case we can choose r = 2l1 = 2l−l2−l3 and s = 1 and we get an interval of
length O(2l1+l3). Similarly, if the difference between p and 2l is of size O(2l3),
we can set r = 2l1 and s = 2l − p and obtain an interval of length O(2l1+l3).
In both of these situations, using Pollard’s kangaroo method would allow us to
compute α′ in time O(2(l1+l3)/2) = O(

√
p/N).

Unfortunately, such an optimal choice of r (and s) is impossible in general.
We will now consider how to choose r in order to minimize the range of possible
values for α1s + α3r. To do this, we will determine a value T (0 < T < p) such
that we can ensure both α3r < T and α1|s| < T by choosing r carefully.

We first consider the inequality α1|s| < T . Replacing s by rMN − kp (from
the definition of s) and bounding α1 by p

MN gives us

p

MN
|rMN − kp| < T

and a few simple manipulations turn the inequality into
∣∣∣∣
MN

p
− k

r

∣∣∣∣ <
(MNT

p2 )

r
.

Thinking of MN
p as the real number γ, and MNT

p2 as ε, we recognize Dirichlet’s
Theorem on rational approximation (see [18] page 60, for example). We can then
say that there exists two integers k and r satisfying the inequality and such that
1 ≤ r ≤ 1

ε = p2

MNT . We also know that k and r can be found using the continued
fraction method (see D page 237, for a brief description).

Since the upper bound on r from Dirichlet’s Theorem is tight, and since
0 ≤ α3 < M , the best bounds we can give on α3r in general are 0 ≤ α3r < p2

NT .
To ensure that α3r < T , we must therefore require

p2

NT
≤ T ,

or equivalently T ≥ p/
√

N . Since we want T as small as possible (we will end
up with an interval of size 2T for the kangaroo method), we fix T = p/

√
N .



230 K. Gopalakrishnan, N. Thériault, and C.Z. Yao

This means that r can be selected such that computing α′ with the kangaroo
method can be done in a time bounded above by O(

√
2p1/2

/
N1/4). From α′ =

rα3 + sα1, we have to solve an easy diophantine equation to obtain α1 and α3
(see Appendix C for details), and Equation (1) gives us α.

We can therefore reduce the search time for the discrete log from O(
√

p) for
Pollard rho (or the kangaroo method applied directly on the possible values of
α) by a factor of at least O(N1/4) in general, and up to O(

√
N) in the best

situations, while keeping the memory requirement of O(log p) of the Kangaroo
algorithm.

4 Scenario II – Partial Information About the Square
and Multiply Chain Is Revealed

In order to do modular exponentiation efficiently, typically one uses the square
and multiply algorithm. We will illustrate the working of this algorithm by means
of an example here and refer the reader to [10], page 71, for its formal description
and analysis.

For example, suppose we want to compute g43. We will first write down 43
in binary as 101011. Starting after the leading 1, replace each 0 by S (Square)
and each 1 by SM (Square and Multiply) to get the string SSMSSMSM . Such
a string goes by the name square and multiply chain. We start with h = g (i.e.
with g1, corresponding to the leading bit) and do the operations (Squaring h
and Multiplying h by g) specified by a scan of the above string from left to
right, storing the result back in h each time. At the end, h will have the desired
result. In this particular example, the successive values assumed by h would be
g → g2 → g4 → g5 → g10 → g20 → g21 → g42 → g43. Note that, the final value
of h is g43 as desired.

In this section, we assume that exponentiation is done using the square and
multiply algorithm. As the power consumption profile of squaring operation is
often considerably different from that of multiplication operation, one could
figure out which one of the two operations is being performed using side channel
information (unless sufficient countermeasures are used). In the following, we
assume that some partial information about the square and multiply chain is
revealed by side channel attacks.

Specifically, we assume that a side channel attack revealed the position of
some of the multiplications (M) and squares (S) of the square and multiply
chain. Note that once a multiplication is identified, the operations next to it
are known to be squares (i.e. we have the substring SMS) since there are no
consecutive multiplications in the square and multiply chain. We will assume
that n elements of the square and multiply chain have not been identified, of
which i are multiplications (M). The problem that we address is how to exploit
the partial information effectively to figure out the entire square and multiply
chain.

As the chain is made up of only S’s and M ’s, if we can figure out the positions
of all the M ’s, the string is completely determined, so we need to figure out the
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exact positions of the remaining i M ’s. A naive approach to solving the problem
consists in guessing the positions of the i remaining M ’s. This will determine
the chain completely and hence the key. We can then verify whether our guess is
correct by checking if gα equals β. If we guessed correctly we can stop, otherwise
we can make new guesses until we eventually succeed. In this approach, we are
essentially doing an exhaustive search, so the complexity would be O(ni log p)
as there are

(
n
i

)
possible guesses for the missing M ’s, each of which requires

O(log p) time to test.
Also note that even though we may know the relative position of some of the

multiplications in the square and multiply chain, this does not readily translate
into information on the bitstring as the number of the remaining M ’s after and
between two known M ’s will change the position of the corresponding nonzero
bits in the binary representation of α (in particular, this is why the algorithms
of Stinson [22] and Cheng [3] cannot easily be adapted to work in this situation).

We could use the fact that no two M ’s are next to one another in the square
and multiply chain to reduce the number of possible guesses to test. However,
the overall effect will usually be small, and the worst case complexity will con-
tinue to be essentially O(ni log p). To solve this, we develop a more sophisticated
approach of exploiting the partial information that will make an impact on the
worst case complexity.

First, we assume that we can somehow split the chain into two parts, left and
right, such that i

2 of the remaining M ’s are on the left part and the other i
2 are

on the right part. We can now make use of the time-memory trade off technique
and determine the entire chain in time O(n

i
2 log p). The details are explained

below.
Suppose we make a specific guess for the i

2 M ’s on the left part and another
guess for the i

2 M ’s on the right part. This determines the square and multiply
chain completely and hence the bit string representation of the key α. Let a be
the number represented by the bit string corresponding to the left part and let
b be the number represented by the bit string corresponding to the right part.
Let x be the length of the bitstring corresponding to the right part. Note that,
we do know x as we are assuming, for the moment, that the position of the split
is given to us. Then, clearly

β = gα

= ga2x+b

=
(
g2x

)a

gb . (5)

If we denote g−2x

by h, then the above equation reduces to

gb = haβ . (6)

We can use Equation (6) to check whether our guess is correct. However, even
if we use Equation (6) to verify a guess, the worst case complexity will still be
O(ni log p). This is because there will be O(n

i
2 ) guesses for a, O(n

i
2 ) guesses for

b and any guess for a can be paired with any guess for b to make up a complete
guess.
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Instead, we shall use a time-memory trade off technique. Consider all different
possible guesses for the left part. This will yield all different possible guesses for
a. For each such guess we compute ha and we record the pairs (a, ha). We then
sort all the pairs into an ordered table based on the second column, viz. the
value of ha.

Next we make a guess for the right part. This will yield a guess for b. We can
now compute y = β−1 × gb. If our guess for b is indeed correct, then y will be
present in the second column of some row in the table we built. The first column
of that row will produce the matching guess for a. So, all that we have to do
is search for the presence of y in the second column of the table. This can be
done using the binary search algorithm as the table is already sorted as per the
second column. If y is present, we are done and have determined the key. If y
is not present, we make a different guess for the right part and continue until
we eventually succeed. Since there are n

i
2 guesses for the right part, the time

complexity of this algorithm will be O(n
i
2 log p). As there are n

i
2 guesses for the

left part, the table that we are building will have that many entries and so the
space complexity of our algorithm will be O(n

i
2 log p).

Hence, both the time and space complexity of our algorithm will be O(n
i
2 )

(ignoring the log p term). In contrast, the naive approach would have a time
complexity of O(ni) and space complexity of O(log p) as only constant amount
of storage space is needed. This is why this is called a time-memory trade off
technique.

In the analysis above, we ignored the costs associated with handling the table
(sorting and searching). Let m = n

i
2 . Whereas it takes time O(m log p) (oracle

operations) to compute the elements of the table, sorting it will require a time of
O(m log m) bit operations even with an optimal sorting algorithm (such as merge
sort). Similarly, to search in a sorted table of size O(m) even with an optimal
searching algorithm (such as binary search) will take O(log m) bit operations.
Note that in practice it is common to use a hash table when m is large, but
this does not change the form of the asymptotic cost. As we have O(m) guesses
for the right part and a search is needed for each guess, the total time spent
after the table is built would be O(m log m). So, technically speaking, the true
complexity of our algorithm is O(m log m) = O(ni/2 log p log log p) bit operations
(since both n and i are O(log p)). However, in practice our “unit time” of oracle
(group) operation is more expensive than a bit operation (requiring at least log p
bit operations), whereas the log log p terms grows extremely slowly, and we can
safely assume that the main cost (in oracle time) also covers the table costs.

Recall that we assumed that we can somehow split the chain into two parts,
left and right, such that i

2 of the remaining M ’s are in each of the two parts. This
is, of course, an unjustified assumption. Although we made this assumption for
ease of exposition, this assumption is not really needed. If we consider the set of
remaining M ’s as ordered, then we can easily define one of them as the “middle
one”. We will use the position of the “middle” M as our splitting position. There
are n− i = O(n) possible positions for the “middle” M (of which only one is the
true position).
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For each of the possible positions, we try to obtain a match by assuming the
“middle” M is in this position and placing the i − 1 others. If i is odd, then
we have i−1

2 = � i
2� of the remaining M ’s on each side, and if i is even then we

have i
2 − 1 of the remaining M ’s on one side (say, on the left) and i

2 on the
other (with i

2 = � i
2�). Using the time-memory trade off technique, we have a

complexity of O(n� i
2 � log p) for each of the possible positions for the “middle”

M , and we obtain a total complexity of O(n� i
2 �+1 log p).

With our algorithm, we are able to cut down the complexity from O(ni) for the
naive approach to O(n� i

2 �+1) (ignoring logarithmic terms). This is a significant
improvement considering that the exponent of n has been reduced to about
half the original value and n will typically be very large (but still O(log p)) in
practical implementations of elliptic curve based cryptosystems.

5 Concluding Remarks

To summarize, in this article we considered the problem of determining the key
used in discrete logarithm based systems when partial knowledge of the key is
obtained by side channel attacks. We considered two different scenarios of partial
information viz. knowing a sequence of contiguous bits in the key and knowing
some part of the square and multiply chain. In both scenarios, we were able to
develop better algorithms in comparison to both using a square-root algorithm
(ignoring the partial information available to us) and doing an exhaustive search
using the extra information available. In particular, in the second scenario, our
algorithm is almost asymptotically optimal considering that its complexity is
very close to the square root of the order of the remaining key space.

Although we have made some progress, many more situations could be con-
sidered. We give the following as examples:

1. Consider the first scenario where we assume that a sequence of contiguous
bits in the middle of the key corresponding to a set of size N have been
revealed by side channel attacks (Section 3.1). Although we were able to
reduce the search time, only some situations will match the optimal search
time of O(

√
p/N). For a general combination of p, M and N , we would

still have to reduce the search time by a factor of O(N1/4) to obtain an
asymptotically optimal algorithm.

2. In the first scenario, we assumed that the known bits are contiguous bits. It
is possible that in some circumstances, we may get to know some bits of the
key, but the known bits may not be contiguous.

3. Finally, the Non-adjacent Form Representation (NAF) of the key is some-
times used to do the exponentiation operation more efficiently (in the average
case) [5]. If a sequence of bits is known, the situation is very similar to that of
Section 3. When partial information about the square and multiply chain is
obtained, the situation changes significantly compared to the binary square
and multiply, since it is usually assumed that multiplications by g and g−1

are indistinguishable. Although it is easy to adapt the algorithm presented in
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Section 4 to locate the position of the multiplications coming from nonzero
bits, a factor of O(2m) (where m is the number of nonzero bits in the NAF
representation of the key) would be included in the complexity to deal with
the signs of the bits, which often cancels any gains we obtained.

In these situations, we leave the development of optimal algorithms, whose com-
plexity would be the square root of the order of the remaining key space (or
close to it), as an open problem.
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A Case I – Left Part

Here we assume that contiguous most significant bits of the key are known. Let
z denote the bit string formed by the sequence of known bits. Suppose that l
is the length of the key. Suppose that l1 is the length of the known sequence of
contiguous bits and l2 is the length of the remaining bits so that l = l1 + l2.

Then the smallest possible value for α is the number a represented (in un-
signed binary notation) by z concatenated with a sequence of l2 zeroes. The
largest possible value for α is the number b represented by z concatenated with
a sequence of l2 ones. We do know that a ≤ α ≤ b.

Since α could take all the values in the interval [a, b], we are in the ideal
situation for Pollard’s Kangaroo Algorithm. This probabilistic algorithm [15,16]
was developed to compute the discrete logarithm when it is known to lie in an
interval [a, b]. It also can be implemented in a space efficient manner and has
expected running time of O(

√
b − a) under some heuristic assumptions.

Since we know both a and b, we can make use of Pollard’s Kangaroo algorithm
in this case. Note that the binary representation of b − a in our case is simply a
sequence of l2 1’s and so b−a is 2l2 −1. The expected running time to determine
α using the Kangaroo algorithm will then be O(2l2/2).
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Observe that if we ignored the partial information available to us and solved
the DLP by using the rho method or the baby-step giant-step method, the
running time would be O(2l/2) which is much higher. Also, observe that if we
had exhaustively searched for a key consistent with our partial knowledge, the
running time would be O(2l2). So, we are able to do better than these two
obvious ways.

B Case II – Right Part

Here we assume that contiguous least significant bits of the key are known. Let
z denote the bit string formed by the sequence of known bits and let α2 denote
the number represented (in unsigned binary notation) by z. Suppose that l is
the length of the key. Suppose that l2 is the length of the known sequence of
contiguous bits and l1 is the length of the remaining bits so that l = l1 + l2.

Observe that if we ignored the partial information available to us and solved
the DLP by using the rho method or the baby-step giant-step method, the run-
ning time would be O(2l/2). Also, observe that if we had exhaustively searched
for a key consistent with our partial knowledge, the running time would be
O(2l1).

We know that α ≡ α2 mod 2l2 (since we know the l2 right-most bits of α),
and we let α1 be the integer corresponding to the l1 left-most bits of α, i.e.

α = α1 × 2l2 + α2 . (7)

Let M =
⌊

p−α2−1
2l2

⌋
, then we know that 0 ≤ α1 ≤ M since 0 ≤ α ≤ p−1. Raising

g to both sides of Equation (7), we can write

β = gα = gα1×2l2+α2

= gα1×2l2
gα2

=
(
g2l2

)α1

gα2 . (8)

If we denote g2l2 by g′ and β × g−α2 by β′, then Equation (8) reduces to β′ =
(g′)α1 . As Teske [23] observed, we can then solve this DLP by using Pollard’s
Kangaroo Algorithm on g′ and β′ in O(

√
M) time as 0 ≤ α1 ≤ M . Once α1 is

known, Equation (7) gives the value of α. As M =
⌊

p−α2−1
2l2

⌋
, the complexity

is easily seen to be O(
√

p
2l2 ), which is same as O(2l1/2). Thus, we are able

to cut down the complexity to square root of the size of the remaining key
space.

C Solving the Diophantine Equation

In Section 3.1, we use Pollard’s kangaroo algorithm to compute α′ = α3r + α1s,
for some carefully chosen r and s. However, this raises the question of how to
extract α1 and α3 from α′, after which we can use Equation (1) to obtain α.
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To do this, we first show that r and s may be assumed to be coprime. Since
s = rMN − kp with ∣∣∣∣

MN

p
− k

r

∣∣∣∣ <
(MNT

p2 )

r
,

we can assume that k and r are coprime: if gcd(k, r) = d > 1, we can replace
r and k with r̃ = r/d and k̃ = k/d, which gives us s̃ = r̃MN − k̃p = s/d. The

inequality clearly still holds for r̃ and k̃ since k̃
r̃ = k

r and
( MNT

p2 )

r <
( MNT

p2 )

r̃ , but we
have smaller values for the interval, which is clearly more advantageous for the
search. Furthermore, r is also coprime to p (since p is a prime and 0 < r < p),
so we have

gcd(r, s) = gcd(r, rMN − kp) = gcd(r, kp) = 1 .

Once we have that gcd(r, s) = 1, finding all integer solutions of α′ = sα1 +
rα3 is straightforward. Well known number theoretic techniques give us that all
solutions are of the form

α1 = b + ir

α3 =
α′ − sb

r
− is

where b ≡ α′s−1 mod r. The problem is then to restrict the number of possible
solutions, and the choice of r and s helps us once again. Recall that we started
with the condition |s| < p/2, which forces r > p

2MN . Since 0 ≤ α1 < p
MN , there

are at most two possible (and easily determined) values of i, and we can verify
each one in time O(log p).

D Computing r and k

We now give a brief description of how to compute r and k using the continued
fraction method. For the theoretical background, the reader can refer to [18]. In
our context, we are trying to approximate the number γ = MN

p with a rational
k
r such that the approximation error is less than ε

r with 1
ε = p2

MNT = p

M
√

N
.

The continued fraction method works iteratively, giving approximations ki/ri

of γ (i ≥ 0). Since 0 < γ < 1, we can initialize the process with γ0 = γ, r0 = 1,
k0 = 0, r−1 = 0 and k−1 = 1. At each iterative step, we let ai = �γ−1

i−1� and
we compute ri = airi−1 + ri−2, ki = aiki−1 + ki−2, and γi = γ−1

i−1 − ai. The
continued fraction expansion of γ will be [0; a1, a2, a3, . . .].

To find an optimal pair (r, s), i.e. a pair that minimizes Mr + p
MN |s| (the

size of the interval that will be searched with the kangaroo method), we proceed
as follows. Once we have a first approximation ki

ri
of γ such that ri+1 < 1

ε , we
evaluate Li = Mri + p

MN |si| (with si = riMN − kip). We then continue the
iterations, keeping track of the best pair r, s found so far (in the form of a triple
(rj , sj, Lj). Once Mri+1 > Lj, we are done and we can set r = rj , s = sj . To
see that we find the optimal pair, observe that the value of ri never decreases,
so once Mri+1 > Lj all further iterations will produce an Li greater than Lj .
This will take no more than O(log p) steps.
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