
Spatial Data Mining: A Database Approach
Martin Ester, Hans-Peter Kriegel, Jörg Sander

Institute for Computer Science, University of Munich
Oettingenstr. 67, D-80538 Muenchen, Germany

{ester | kriegel | sander}@informatik.uni-muenchen.de
http://www.dbs.informatik.uni-muenchen.de

Abstract. Knowledge discovery in databases (KDD) is an important task in spa-
tial databases since both, the number and the size of such databases are rapidly
growing. This paper introduces a set of basic operations which should be sup-
ported by a spatial database system (SDBS) to express algorithms for KDD in
SDBS. For this purpose, we introduce the concepts of neighborhood graphs and
paths and a small set of operations for their manipulation. We argue that these op-
erations are sufficient for KDD algorithms considering spatial neighborhood re-
lations by presenting the implementation of four typical spatial KDD algorithms
based on the proposed operations. Furthermore, the efficient support of operations
on large neighborhood graphs and on large sets of neighborhood paths by the
SDBS is discussed. Neighborhood indices are introduced to materialize selected
neighborhood graphs in order to speed up the processing of the proposed opera-
tions.

Keywords: Spatial Data Mining, Neighborhood Graphs, Efficient Query Processing.

1 Introduction
Spatial Database Systems (SDBS) are database systems for the management of spatial
data. Both, the number and the size of spatial databases are rapidly growing in applica-
tions such as geomarketing, traffic control and environmental studies. This growth by
far exceeds human capacities to analyze the databases in order to find implicit regular-
ities, rules or clusters hidden in the data. Therefore, automated knowledge discovery be-
comes more and more important in spatial databases. Knowledge discovery in data-
bases (KDD) is the non-trivial extraction of implicit, previously unknown, and poten-
tially useful information from databases [FPM 91].

A wide variety of algorithms have been proposed for KDD. [MCP 93] tries to classify
these algorithms and identifies the following generic tasks:

• class identification, i.e. grouping the objects of the database into meaningful sub-
classes.

• classification, i.e. finding rules that describe the partition of the database into a given
set of classes.

• dependency analysis, i.e. finding rules to predict the value of some attribute based on
the value of another attribute.

• deviation detection, i.e. discovering deviations from the expectations, e.g. outliers in
a class of objects.

While a lot of algorithms have been developed for KDD in relational databases, the
area of KDD in spatial databases has only recently emerged (see [KHA 96] for an over-

Proc. of the Fifth Int. Symposium on Large Spatial Databases (SSD ‘97),
Berlin, Germany, Lecture Notes in Computer Science, Springer, 1997.

view). The goal of this paper is to define a set of basic operations for KDD in SDBS
which can be used to express many relevant algorithms in the sense that most of the rel-
evant queries in a relational database can be expressed using the five basic operations
of relational algebra. [AIS 93] follow a similar approach for KDD in relational data-
bases. The definition of such a set of basic operations and their efficient support by an
SDBS will speed up both, the development of new spatial KDD algorithms and their
performance.

The rest of the paper is organized as follows. Section 2 discusses a sample geographic
information system to illustrate the tasks of KDD in SDBS and to motivate the defini-
tion of the basic operations. We present the concepts of neighborhood graphs and paths
together with their basic operations in section 3. Section 4 demonstrates the applicability
of the proposed basic operations by presenting four spatial KDD algorithms based on
these operations, two of them from literature and two new ones. Section 5 discusses effi-
cient database support for neighborhood graphs and paths and their operations.
Section 6 summarizes the contributions of this paper and discusses several issues for
further research.

2 KDD Tasks in a Geographic Information System
A geographic information system is an information system for data representing aspects
of the surface of the earth together with relevant facilities such as roads or houses. In
this section, we introduce a sample geographic database providing spatial and non-spa-
tial information on Bavaria with its administrative units such as communities, its natural
facilities such as the mountains and its infrastructure such as roads. We use an extended
relational model and the SAND (Spatial And Non-spatial Database) architecture
[AS 91]. The spatial extension of the objects (i.e. polygons or lines) is stored and ma-
nipulated using an R*-tree [BKSS 90].

A small part of the relation communities is depicted in figure 1. The geographic da-
tabase BAVARIA may be used, e.g., by economic geographers to discover spatial rules
on the economic power of communities. Some non-spatial attribute such as the unem-
ployment rate is chosen as an indicator of the economic power. In a first step, areas with
a locally minimal unemployment rate are determined which are called centers, e.g. the
city of Munich. The theory of central places [Chr 68] claims that the attributes of central
cities influence the attributes of their neighborhood in a degree which decreases with
increasing distance. E.g., in general it is easy to commute daily from some community
to a close by center implying a low unemployment rate in this community. Thus, in a
second step the theoretical distribution of the unemployment rate in the neighborhood
of the centers is calculated, e.g.

when moving away from Munich,
the unemployment rate increases

Due to the general assumption of spatial continuity [IS 89], this distribution is typi-
cally continuous. In a third step, deviations from the theoretical distribution are discov-
ererd, e.g.

when moving away from Munich towards the north east,
the unemployment rate decreases

The goal of the fourth step is to explain these deviations. E.g., if some community is
relatively far away from a center but is well connected to it by train, the unemployment
rate in this community is not as high as theoretically expected. In our example, the de-
viation is explained by the location of the Munich airport:

when moving away from Munich towards the airport,
the unemployment rate decreases

Summarizing, knowledge discovery according to the theory of central places is per-
formed in the following steps:

(1) discover centers, i.e. local extrema of some non-spatial attribute

(2) determine the (theoretical) trend of some non-spatial attribute when moving
away from the centers

(3) discover deviations from the theoretical trend

(4) explain the deviations by other spatial objects e.g. by some existing infrastruc-
ture in that area.

Fig. 1. The communities with their spatial and non-spatial attributes

Communities name population unemploy-
ment rate

rate of
foreigners

spatial
extension

Munich 1.300.000 0.06 0.15

.

Another typical approach for knowledge discovery in geographic databases is to find
interesting correlations between different characteristics of certain areas. E.g., we might
find that areas with a high value for the attribute rate of retired people are
highly correlated with neighboring mountains and lakes. This KDD task is performed
in two steps:

(1) find areas of spatial objects, e.g. clusters or neighboring objects, which are
homogeneous with respect to some attribute values.

(2) find associations with other characteristics of these areas, e.g. by correlating
them with reference maps or with other attribute values.

We conjecture that these tasks of KDD are representative not only for economic ge-
ography but also for a broader class of applications of geographic information systems,
e.g. for environmental studies.

Some other approaches to extract knowledge from spatial databases have been pro-
posed in the literature. In [LHO 93] attribute-oriented induction is applied to spatial and
non-spatial attributes using (spatial) concept hierarchies to discover relationships be-
tween spatial and non-spatial attributes. A spatial concept hierarchy represents a suc-
cessive merging of neighboring regions into larger regions. In [NH 94] the clustering
algorithm CLARANS which groups neigboring objects automatically without a spatial
concept hierarchy is combined with attribute-oriented induction on non-spatial at-
tributes. [KH 95] introduces spatial association rules which are discussed in more detail
in section 4.1. [Ng 96] and [KN 96] present algorithms to detect properties of clusters
using reference maps and thematic maps. E.g. a cluster may be explained by the exist-
ence of certain neigboring objects which may “cause” the existence of the cluster.

3 Basic Operations for KDD in SDBS
Roughly speaking, SDBS are relational databases plus a concept of spatial location and
spatial extension. The explicit location and extension of objects define implicit relations
of spatial neighborhood. We claim that most KDD algorithms for spatial databases will
make use of those neighborhood relationships, because it is the main difference be-
tween KDD in relational DBS and in SDBS, that attributes of the neighbors of some ob-
ject of interest may have an influence on the object and therefore have to be considered
as well. Furthermore, the discussion of the sample applications in the previous section
indicates that the efficiency of many KDD algorithms for SDBS depends heavily on an
efficient processing of these neighborhood relationships since the neighbors of many
objects have to be investigated in a single run of a KDD algorithm.

Therefore, we present in this section a novel approach to KDD in spatial databases
aiming at an extension of SDBSs with data structures and operations for efficient pro-
cessing of implicit relations of spatial neigbhborhoods. This approach allows a tight in-
tegration of spatial KDD algorithms with the database management system of a SDBS,
speeding up both the development and the execution of spatial KDD algorithms.

3.1 Neighborhood Graphs and Neighborhood Paths
We introduce the concept of neighborhood graphs explicitly representing those implicit
neighborhood relations relevant for KDD tasks. [EG 94] follows a similar approach for
modeling networks such as roads or telephone lines for the purpose of spatial query pro-
cessing. While [EG 94] deals with graphs of explicit networks, we use graphs of im-
plicit relations.

A neighborhood graph Gneighbor for some spatial relation “neighbor” is a graph (N,E)
with the set of nodes N and the set of edges E. Each node corresponds to an object of
the database and two nodes n1 and n2 are connected via some edge iff neighbor(ob-
ject(n1),object(n2)) holds. The predicate neighbor may be one of the following neigh-
borhood relations:

Topological-Relations (c.f. [Ege 91])
 e.g. {meet, overlap, covers, covered-by, contains, inside, equal}

Metric-Relations e.g. {distance < d}
Direction-Relations e.g. {north, south, west, east}

Based on the neighborhood graphs, we define a neighborhood path in some graph G
as a list of nodes of G with an edge of G connecting each pair of successors in the list,
e.g. [n1, n2, . . ., nk] where neighbor(ni, ni+1) holds for each i, 1 ≤ i ≤ k - 1. We define the
length of a path as the number of its nodes.

3.2 The Basic Operations
Now, we present a set of basic operations on neighborhood graphs and paths designed
to support KDD tasks such as those discussed in the previous sections. We use the ex-
pressions nRelations, nGraphs and nPaths to denote sets of neighborhood rela-
tions, neighborhood graphs and neighborhood paths, respectively.

Note that we do not define an explicit domain of Databases. Instead, we use the do-
main 2Objects of all subsets of the set of all objects to define our operations. We assume
that standard operations such as select(db:Set-Of-Objects;pred:Predicate)
and get-value(o:Object;attr:Attribute) are supported by the SDBS. In the
following, we introduce the new operations on neighborhood graphs and paths to be
provided by an SDBS. We present both, the signature of the operations and a short de-
scription of their meaning.

get_nGraph: 2Objects x nRelations -> nGraphs

The operation get_nGraph(db,rel) returns the neighborhood graph represent-
ing the neighborhood relation rel on the objects of db. Note that rel may either
be one of the primitive neighborhood relations such as intersects or a conjunc-
tion or disjunction of two neighborhood relations such as intersects and

north.

get_neighborhood: nGraphs x Objects x Predicates -> 2Objects

The operation get_neighborhood(graph,o,pred) returns the set of all objects
oi directly connected to o via some edge of graph satisfying the conditions ex-
pressed by the predicate pred. An additional selection condition pred is used if we
want to investigate only a specific class of neighbors of object o or if we want to
exclude explicitly certain types of neighbors of o. The definition of pred may use
spatial as well as non-spatial attributes.

create_nPaths: 2Objects x nGraphs x Predicates x Int -> 2nPaths

The operation create_nPaths(objects,graph,pred,i) creates the set of all
paths starting from one of the objects and following the edges of the neighbor-
hood graph graph with length ≤ i. The predicate pred expresses further con-
straints on the paths to be created. This argument of create_nPaths is the most im-
portant for the computational complexity of KDD algorithms operating on sets of
paths because the number of all paths in a neighborhood graph tends to be very
large. Furthermore, most of the neighborhood graphs will contain many cycles be-
cause most of the neighborhood predicates are symmetric. However, for the pur-
pose of KDD we are mostly interested in in a certain class of paths, that is to say
paths which are “leading away” from the starting object in a straightforward sense.
We think that a spatial KDD algorithm using a set of paths which are crossing the
space in an arbitrary way, leading forward and backwards and contain cycles will
not produce understandable patterns (if any will be produced at all). Therefore we
assume that the predicate pred will in general be defined with respect to a path
p=[n1,n2,...,nk] like “direction of the edge (ni, ni+1) ≅ direction of the edge (ni-1, ni)”
or “distance(n1, ni+1) > distance(n1, ni)”.

extend: 2nPaths x nGraphs x Pred x Int -> 2nPaths

The operation extend(set_of_paths,graph,pred,i) returns the set of all
paths extending one of the paths of set_of_paths by up to i edges of graph. The
predicate pred is assumed to be the same as in the create_nPaths operation that
was used to create the set_of_paths. Note that the members of set_of_paths
are not contained in the result such that an empty result indicates that none of the
elements of set_of_paths could be extended.

Finally, we assume some host programming language providing the standard opera-
tions on sets of paths and on single paths such as length(path:Neighborhood-
Path) and iterators such as for each path in paths.

4 Spatial KDD Algorithms Using the Basic Operations
In this section, we illustrate the applicability of the proposed basic operations by pre-
senting four spatial KDD algorithms based on these operations, two of them from liter-
ature (section 4.1 and section 4.2) and two new ones (section 4.4 and section 4.3).

4.1 Spatial Association Rules
[KH 95] proposes a method for mining spatial association rules consisting of five steps.
Step 2 (coarse spatial computation) and step 4 (refined spatial computation) involve
spatial aspects of the objects and thus are examined in the following. Step 2 computes
spatial joins of the target object type (e.g. town) with each of the other specified object
types (e.g. water, road, boundary and mine) using the neighborhood relation g_close_to.
For each of the candidates obtained from step 2 which passed step 3, in step 4 the exact
spatial relation is determined. Finally, a relation such as the one depicted in figure 2 (c.f.
[KH 95]) results which is the input of the non-spatial step 5.

Fig. 2. sample candidates with exact spatial relations

Both of these spatial steps can be implemented using the operations on neighborhood
graphs as follows. Step 2 requires several operations to select the objects of the speci-
fied object types. Then, several calls of get_neighborhood on the selected sets of ob-
jects with the predicate g_close_to yield neighborhood graphs and create_nPaths on
these graphs with i=2 yields the required pairs of objects. Step 4 is based on the neigh-
borhood graphs for the special neighborhood relations, e.g. special_graph. Then, the
refined spatial computation for a pair of objects (o1,o2) is equivalent to the test whether
o2 is element of the result of get_neighborhood(special_graph,o1,true).

4.2 Spatial Clustering
Clustering algorithms group a given set of objects into classes, i.e. clusters, such that
objects in one class show a high degree of similarity, while objects in different classes
are as dissimilar as possible. In the BAVARIA database (see section 2), e.g., a clustering

Town Water Road Boundary

Victoria <meet, J.FucaStrait> <overlap,highway1>,
<overlap, highway17>

<g_close_to,US>

Saanich <meet, J.FucaStrait> <overlap,highway1>,
<g_close_to, highway17>

<g_close_to,US>

PrinceGeorge <overlap, highway97>

Petincton <meet,OkanaganLake> <overlap, highway97> <g_close_to,US>

.

algorithm can be applied to discover centers of high economic power. Several cluster-
ing algorithms for large spatial databases have been designed (e.g. [EKX 95] and
[EKSX 96]).

The goal of the algorithm DBSCAN [EKSX 96] is to partition a database into sets of
objects, i.e. clusters, such that the density of objects inside of each cluster is consider-
ably higher than outside of the cluster. Furthermore, the density within the areas of
noise is lower than the density in any of the clusters. DBSCAN discovers all clusters in
db with a density of at least MinPts objects in the Eps neighborhood of each object.
To find a cluster, DBSCAN uses region queries. Since region queries retrieve a special
kind of neighborhood of the center point of the region, DBSCAN can be expressed us-
ing some of our proposed basic operations. The neighborhood graph defined by the met-
ric predicate ”distance(Object1,Object2) ≤ Eps” is created and then the
Eps-neighborhood of each point is retrieved using the operation
get_neighborhood(NeighborhoodGraph,Point,true).

4.3 Spatial Trend Detection
A trend may be defined as a temporal pattern in some time series data such as network
alarms or occurrences of recurrent illnesses (c.f. [BC 96]). In an SDBS, we define a spa-
tial trend as a pattern of change of some non-spatial attribute (attributes) in the neigh-
borhood of some database object, e.g. “when moving away from Munich, the economic
power decreases”.

In the following we introduce an algorithm which discovers trends in SDBS starting
from some object o. In each step, the algorithm computes both the local changes of the
specified attribute when moving to the neighbors as well as the distance to these neigh-
bors. A linear regression is applied to these pairs of values (change of attribute value,
distance). If the resulting correlation coefficient is larger than a specified threshold, the
slope of the resulting linear function is returned as the trend for o. If the correlation co-
efficient is not large enough, no trend is discovered for o. Figure 3 depicts a map of the
attribute average rent from the BAVARIA database. A significant trend can be observed
for the city of Munich: the average rent decreases quite regularly when moving away
from Munich.

In the following, we present the algorithm for discovering spatial trends in pseudo
code notation. It returns all trends of the non spatial attribute attr in db of length be-
tween min_length and max_length with the neighborhood defined by pred. The
algorithm incrementally tries to find significant trends of maximal length, i.e. it extends
all current neighborhood paths by one step, performs a linear regression on the attr
values of the last objects on these paths and continues if the correlation coefficient of
the current trend is at least equal to minconf. Note that the algorithm uses a predicate
similar_direction, i.e. “direction of the edge (ni, ni+1) ≅ direction of the edge
(ni-1, ni)”, to restrict the creation of neighborhood paths.

discover_spatial_trends(db:Set_of_Objects;sel:Predicate;

min_length,max_length:Int;minconf:Real;attr:Attribute;

pred:NeighborhoodRelation;)

focus:=select(db,sel);

graph:=get_nGraph(db,pred);

for each object in focus do

all_paths:=create_nPaths({object},graph,

similar_direction,min_length);

local_trends:=EMPTY_LIST;

trend_list:=EMPTY_LIST;

correlation:=MAXREAL;

slope:=MAXREAL;

new_paths:=extend(all_paths,graph,similar_direction,1);

current_length:=2;

current_trend:=NO_TREND;

while current_length < max_length and new_paths ≠ EMPTY
and correlation > minconf do

all_paths:=union(new_paths,all_paths);

for each path in all_paths do

last_object:=get_object(path,length(path));

attr_change:= get_value(object,attr)

- get_value(last_object,attr);

distance:=dist(object,last_object);

insert [attr_change,distance] into list local_trends;

end for each path in all_paths;

perform_linear_regression(local_trends,slope,

correlation);

new_paths:=extend(all_paths,graph,similar_direction,1);

current_length:= current_length + 1;

if correlation > minconf then

current_trend:=[object,slope,correlation];

end if // correlation > minconf;

end while // current_length < max_length and . . and . . ;

if current_trend ≠ NO_TREND then
insert current_trend into trend_list;

end if // current_trend ≠ NO_TREND;
end for // each object in focus;

return trend_list;

end // discover_trends;

4.4 Spatial Classification
We assume a database of objects described by a collection of attributes each having a
small domain of discrete values. The task of classification is to discover a set of classi-
fication rules that determine the class of any object from the values of its attributes. A
spatial classification algorithm may, e.g., be used to explain the deviations from some
discovered or some theoretical spatial trend. The following algorithm is based on the
well-known ID3 algorithm [Qui 86] designed for relational DBS. The extension for
SDBS is to consider not only attributes of the object o to be classified but to consider
also attributes of neighboring objects, i.e. objects of a neighborhood path starting from
o. Thus, we define a generalized attribute for some neighborhood path p = [o1, . . ., ok]
as a tuple (attribute-name, index) where index is a valid position in p representing the
attribute with attribute-name of object oindex. The generalized attribute (eco-
nomic-power,2), e.g., represents the attribute economic-power of some (direct) neigh-
bor of object o1.

Since the influence of neighboring objects and their attributes decreases with increas-
ing distance, we limit the length of the relevant neighborhood paths by an input param-
eter max-length. Furthermore, the classification algorithm allows the input of a predi-
cate focusing the search for classification rules on the objects of the database fulfilling
this predicate. Figure 4 depicts a sample decision tree and two rules derived from it.
Economic power has been chosen as the class attribute and the focus is on all objects

Fig. 3. Average rent for the communities of Bavaria

Munich

of type city.
In the following, the algorithm for discovering spatial classification rules is presented

in pseudo code notation. It discovers all spatial classification rules, i.e. paths from the
root to one of the leaves of the decision tree, with all attributes yielding an information
gain of at least ε. Note that the algorithm uses a predicate larger_distance, i.e.“dis-
tance(n1, ni+1) > distance(n1, ni)” to restrict the creation of neighborhood paths.

discover_spatial_classification_rules(db:Set_of_Objects;

sel:NonSpatialPredicate; class_attr:Attribute;

pred:NeighborhoodRelation; max_length:Int)

focus:=select(db,sel);

neighborhood:=get_nGraph(focus,pred);

paths:=create_nPaths(focus,neighborhood,larger_distance,

max_length);

classify(class_attr,neighborhood,EMPTY_RULE,paths,

max_length);

end // discover_classification_rules;

classify(class_attr:Attribute; neighborhood:NeighborhoodGraph;

rule:ClassificationRule; paths:set_of_paths;

max_length:Int)

max_info_gain:=0.0;

max_attr:=NULL;

for i from 1 to max_length do

for each generalized attribute (Aj,i) not used in rule do

info-gain:=calculate_information_gain(Aj,

class_attr,i,paths);

if info_gain > max_info_gain then

max_attr:=Aj;

max_neighbors:=i;

max_info_gain:=info_gain;

end if // info_gain > max_info_gain;

end for // each attribute Aj not yet used;

end for // i from 0 to max_length - 1;

if max_attr ≠ NULL and max_info_gain > ε then
for each value of max_attr do

extended_rule:=rule + “max_attr,max_neighbors,value”;

classify(class_attr,neighborhood,

extended_rule,paths,max_length);

end for // each value of max_attr;

else print rule;

end if // max_attr ≠ NULL and max_info_gain > ε;
end // classify;

calculate_information_gain(attr,class_attr: Attribute;

index:Int;paths:set_of_paths);

for each path in paths do

consider attr of the index-th object of path and class_attr

of the first object of path for the calculation of the

information gain

end for // each path in paths;

end // calculate_information_gain;

Fig. 4. sample decision tree and rules discovered by the classification algorithm

population of city

low medium high

type of neighbor of city

city road airport

type of

 neighbor of neighbor of city

cityroadairport

economic power

of city = high

(95 %)

amount of taxes

of city

very
low low high

very
high

economic power
of city = high

(87 %)

IF population of city = low AND amount of taxes of city = very high

THEN economic power of city = high (87 %)

IF population of city = high AND type of neighbor of city = road

THEN economic power of city = high (95 %)

AND type of neighbor of neighbor of city = airport

. . .

. . .

5 Efficient SDBS Support for Neighborhood Graphs and Paths
In this section, we discuss the efficient support of the operations on neighborhood
graphs and paths by an SDBS. We introduce the concept of neighborhood indices ma-
terializing selected neighborhood graphs and show how they can be used to speed up
the processing of our basic operations. Furthermore, a cost model is presented which
allows to compare the expected execution time of a get-neighborhood operation with
vs. without a neighborhood index.

5.1 Neighborhood Indices
First, we discuss some related work. [Rot 91] introduced the concept of spatial join in-
dices as a materialization of a spatial join result with the goal of speeding up spatial
query processing. This paper, however, does not deal with the questions of efficient im-
plementation of such indices.

[LH 92] extends the concept of spatial join indices by associating their distance with
each pair of objects (distance associated join indices). Thus, the join index can be used
to support not only queries concerning a single spatial predicate but the index is appli-
cable to a large number of queries. In its naive form, however, this index requires O(n2)
space because it needs one entry not only for pairs of neighboring objects but for each
pair of objects. Therefore, in [LH 92] a hierarchical version of distance associated join
indices is proposed. These indices assume a spatial hierarchy of objects, e.g. countries
> cities > houses. Entries in the index are only generated for pairs of objects contained
in the same object of the next higher level of the hierarchy, e.g. only for pairs of houses
of the same city and only for pairs of cities of the same country. The hierarchical ap-
proach significantly reduces the space requirements of the join index but also prevents
its application to databases if a spatial hierarchy is either not available or the spatial hi-
erarchy is not relevant for the purpose of KDD. E.g. in the geographic information sys-
tem on Bavaria, there is a spatial hierarchy of districts > cities etc., but the influence of
cities, e.g., to their neighborhood is not restricted to cities inside of the same district.
Consequently, we cannot rely on such political hierarchies for the purpose of supporting
spatial data mining by neighborhood graphs.

In the following, we present our concept of neighborhood indices. We assume the ex-
istence of some spatial index such as an R*-tree [BKSS 90] to support spatial query pro-
cessing. If many operations are performed on the same neighborhood graph and if this
graph is relatively stable, an index should be constructed for this neighborhood graph.
This seems to be especially important if neighborhood paths are to be constructed from
some neighborhood graph. Note that many SDBS are rather static since there are not
many updates on objects such as geographic maps or proteins. We define a neighbor-
hood index as an index explicitly representing a neighborhood graph, i.e. a neighbor-
hood index supports the processing of all operations on its corresponding neighborhood
graph without accessing the database itself. A simple implementation of a neighbor-
hood index using a B+-tree is illustrated in figure 5. In general, a neighborhood graph

is undirected implying a double representation of each edge in the neighborhood index.

Clearly, it is prohibitive to construct neighborhood indices for each neighborhood
graph. It is the task of the database administrator to select some important neighborhood
graphs and to create the neighborhood indices for these graphs. The cost model which
is presented in the next section may provide support for this task.

5.2 A Cost Model
A cost model is developed to predict the cost of performing a
get_neighborhood(graph,object,filter) operation with vs. without a neigh-
borhood index. In the database community, usually the number of page accesses is cho-
sen as the cost measue. However, the amount of CPU time required for evaluating a
neighborhood relation on spatially extended objects such as polygons may very large so
that we model both, the I/O time and the CPU time for an operation. We use tpage, i.e.
the execution time of a page access, and tfloat, i.e. the execution time of a floating point
comparison, as the units for I/O time and CPU time, resp.

In figure 6, we define the parameters of the cost model and list typical values for each
of them (see [BKSS 94] for the values of tpage and tfloat):

name meaning values

n number of nodes in the neighborhood graph [103 . . 105]

e number of (directed) edges in the neighb. graph [103 . . 106]

v average number of vertices of a polygon [10 . . 104]

coid capacity of a page in terms of object identificators 1000

cpol average capacity of a page in terms of polygons 4096 / (4 * v)

tpage execution time for a page access 1 * 10-2 sec

tfloat execution time for a floating point comparison 3 * 10-6 sec

Object Neighbors

o1

o2

o2, o3, o7, o9

o1, o3, o9

.

B+-Tree

Fig. 5. Sample Neighborhood Index

Fig. 6. Parameters of the cost model

In a neighborhood index, there is one entry for each of the e edges of the associated
neighborhood graph. The fan-out of the B+-tree is coid /2 since object identificators are
used as keys. On the average, object has e/n neighbors which have to be read from
data pages of the B+-tree. No refinement step has to be performed. Thus, the expected
cost for performing a get_neighborhood(graph,object,filter) operation with
a neighborhood index is as follows:

If no neighborhood index is available for graph, the operation
get_neighborhood(graph,object,filter) is evaluated directly on the database,
i.e. on the R*-tree. In an R*-tree, there is one entry for each of the n nodes (i.e. for their
associated spatial objects) of the neighborhood graph. The fan-out of the R*-tree is
coid /5 (in the case of 2D objects) since bounding boxes are used as keys. We assume
that the neighbors of object are well clustered on the data pages of the R*-tree and can
be read with the minimal number of page accesses. Finally, a refinement step has to be
performed. We assume the neighborhood predicate intersects which requires v* log v
floating point comparisons. Hence, the expected cost for performing a
get_neighborhood(graph,object,filter) operation without using a neighbor-
hood index is as follows:

Using the cost model, we performed a simulation of several scenarios. We considered
coid, cpol, tpage and tfloat to be fixed and n, e and v to be variable. In each scenario, a fixed
value is chosen for two of the variable parameters and the third one varies over its do-
main. The results of the simulation of the three scenarios are depicted in figure 7. The
implementation using a neighborhood index significantly outperforms the one without
using a neighborhood index. The speed-up increases with increasing values of e and v
and with decreasing values of n. To conclude, neighborhood indices are recommended
for graphs with a high average number of neighbors (e/n) or with large objects (v).

cost with neighborhood index ecoid 2⁄log e
n coid×-------------------+

 
 
 

tpage×=

cost without neig. index ncoid 5⁄log e
n cpol×-------------------+

 
 
 

tpage× v vlog×() tf loat×+=

Execution Time for n = 10.000 and v = 100

0

20

40

60

80

100

120

140

0 20.000 40.000 60.000 80.000 100.000
e

ti
m

e
in

 m
se

c

with index
without index

Execution Time for e = 100.000 and v = 100

0

20

40

60

80

100

120

140

0 20.000 40.000 60.000 80.000 100.000
n

ti
m

e
in

 m
se

c

with index
without index

Execution Time for n = 10.000 and e = 30.000

0

20

40

60

80

100

120

0 1.000 2.000 3.000 4.000 5.000
v

ti
m

e
in

 m
se

c

with index
without index

Fig. 7. Simulation of three different scenarios

5.3 Using the Neighborhood Indices
In this section, we discuss the implementation of conjunctions of neighborhood rela-
tions, of the operation create_nPaths and of updates on a neighborhood index.

So far, we have only considered neighborhood graphs defined by atomic neighbor-
hood predicates. When the graph is defined by a conjunction of neighborhood relations,
the neighborhood index of one of the atomic predicates is used to generate candidates
which have to be checked further more in a second step. For this purpose, we define the
selectivity of a neighborhood graph or index as

Thus, a high selectivity implies a low average number of neighbors. The implemen-
tation of the operation get_neighborhood(graph,object,filter) for conjunc-
tions of neighborhood relations follows a two-step approach:
• filter step:

The most selective of the existing neighborhood indices which apply to the graph is
determined. The set of all neighbors of object is obtained using this index and is
called the set of candidates.

• refinement step:
For all elements of the set of candidates it is checked whether the other rela-
tions of graph hold. This test may either use other neighborhood indices or may be
directly performed using the spatial extension of the two objects obtained from the
database.

The implementation of the operation create_nPaths(graph,objects,fil-
ter,i) is based on the operation get_neighborhood. A call of
get_neighborhood(graph,last-object,filter) for the last-object of
the current path obtains all one-step extensions of the current path. A depth-first tra-
versal of graph is more efficient than a breadth-first traversal since the main memory
requirements are much smaller. This is due to the fact that the depth-first traversal com-
pletes the current path before starting to create another one while the breadth-first tra-
versal has to manage a potentially very large number of incomplete paths before the first
one is completed. Redundant calls of get_neighborhood(graph,object,fil-
ter) for the same arguments can be avoided when providing a buffer of i pages so
that all neighbors on the current path are always main memory resident. A lot of work
on DBS support for path operations has been reported. However, typically the graphs
are assumed to be directed and acyclic (cf. [AK 93], [LD 89]) which is not true for
neighborhood graphs.

Clearly, updates of a SDB require updates of all its derived neighborhood indices.
Fortunately, updates of the neighborhood indices on the insertion of a new object are
restricted to the neighbors of the new object in the database. Therefore, the update of
the neighborhood index can be efficiently performed using the operation
get_neighborhood.

selectivity = n
e

6 Conclusions
The main contribution of this paper is the definition of a a set of basic operations for
KDD in SDBS which should be supported by an SDBS. The definition of such a set of
basic operations and their efficient support by an SDBS will speed up both, the devel-
opment of new spatial KDD algorithms and their performance. We introduce the con-
cepts of neighborhood graphs and paths and a small set of operations for their manipu-
lation. We argue that these operations are sufficient for KDD algorithms considering
spatial neighborhood relations by presenting the implementation of four typical spatial
KDD algorithms based on the proposed operations. Two of these algorithms are
well-known from literature, the other two algorithms are new and are important contribu-
tions to clarify the differences between KDD in relational and in spatial databases. Fur-
thermore, the efficient support of operations on large neighborhood graphs and on large
sets of neighborhood paths by the SDBS is discussed. Neighborhood indices are intro-
duced to materialize selected neighborhood graphs in order to speed up the processing
of the proposed operations.

There are several issues for further research. First, the algorithms for optimizing the
performance of the KDD operations using the available indices have to be evaluated.
Second, the materialization of neighborhood paths will be investigated. This seems to
be feasible if appropriate filters are used to create reasonably small sets of paths. A ma-
terialization of relevant paths may further speed-up the overall performance of KDD
tasks because different KDD algorithms may use the same set of paths and each algo-
rithm may scan this set of paths many times. Finally, applications in such domains as
geography, biology or CAD will be investigated to insure the practical impact of our
approach.

Acknowledgements

We thank Xiaowei Xu, Stefan Gundlach and Alexander Frommelt (Institute of Com-
puter Science, University of Munich) for fruitful discussions on draft versions of this
paper. Henning Brockfeld (Institute of Economic Geography, University of Munich) in-
troduced us into the KDD problems of economic geographers and kindly provided the
BAVARIA data.

References

[AIS 93] Agrawal R., Imielinski T., Swami A.: “Database Mining: A
Performance Perspective”, IEEE Transactions on Knowledge and Data
Engineering, Vol.5, No.6, 1993, pp. 914-925.

[AK 93] Agrawal R., Kiernan J.: “An Access Structure for Generalized Transitive
Closure Queries”, Proc. 9th Int. Conf. on Data Engineering, 1993, pp.
429-438.

[AS 91] Aref W.G., Samet H.: “Optimization Strategies for Spatial Query
Processing”, Proc. 17th Int. Conf. VLDB, Barcelona, Spain, 1991,
pp. 81-90.

[BC 96] Berndt D. J., Clifford J.: “Finding Patterns in Time Series: A Dynamic
Programming Approach”, in Fayyad U., Piatetsky-Shapiro G., Smyth P.,
Uthurusamy R. (eds.): Advances in Knowledge Discovery and Data
Mining, AAAI Press / The MIT Press, 1996, pp. 229-248.

[BKSS 90] Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: ‘The R*-tree: An
Efficient and Robust Access Method for Points and Rectangles’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, Atlantic City, NJ,
1990, pp. 322-331.

[BKSS 94] Brinkhoff T., Kriegel H.-P., Schneider R., Seeger B.: ‘Efficient
Multi-Step Processing of Spatial Joins’, Proc. ACM SIGMOD Int. Conf.
on Management of Data, Minneapolis, MN, 1994, pp. 197-208.

[Chr 68] Christaller W.: “Central Places in Southern Germany”, (in German),
Wissenschaftliche Buchgesellschaft, 1968.

[Ege 91] Egenhofer M. J.: “Reasoning about Binary Topological Relations”,
Proc. 2nd Int. Symp. on Large Spatial Databases, Zurich, Switzerland,
1991, pp.143-160.

[EG 94] Erwig M., Gueting R.H.: “Explicit Graphs in a Functional Model for
Spatial Databases”, IEEE Transactions on Knowledge and Data
Engineering, Vol.6, No.5, 1994, pp. 787-803.

[EKX 95] Ester M., Kriegel H.-P., Xu X.: “Knowledge Discovery in Large Spatial
Databases: Focusing Techniques for Efficient Class Identification”,
Proc. 4th Int. Symp. on Large Spatial Databases, Portland, ME, 1995,
pp.67-82.

[EKSX 96] Ester M., Kriegel H.-P., Sander J., Xu X.: “A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise”, Proc.
2nd Int. Conf. on Knowledge Discovery and Data Mining, Portland,
Oregon, 1996, AAAI Press, 1996.

[FPM 91] Frawley W.J., Piatetsky-Shapiro G., Matheus J.: “Knowledge Discovery
in Databases: An Overview”, in: Knowledge Discovery in Databases,
AAAI Press, Menlo Park, 1991, pp. 1-27.

[IS 89] Isaaks E.H., Srivastava R.M.: “Applied Geostatistics”, Oxford
University Press, New York, 1989.

[KH 95] Koperski K., Han J.: “Discovery of Spatial Association Rules in
Geographic Information Databases”, Proc. 4th Int. Symp. on Large
Spatial Databases, Portland, ME, 1995, pp.47-66.

[KHA 96] Koperski K., Adhikary J., Han J.: “Knowledge Discovery in Spatial
Databases: Progress and Challenges”, Proc. SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, Technical
Report 96-08, University of British Columbia, Vancouver, Canada,
1996.

[KN 96] Knorr E.M., Ng R.T.: “Finding Aggregate Proximity Relationships and
Commonalities in Spatial Data Mining”, IEEE Transactions on
Knowledge and Data Engineering, Vol.8, No.6, 1996, pp. 884-897.

[LD 89] Larson P.-A., Deshpande V.: “A File Structure Supporting Traversal
Recursion”, Proc. ACM SIGMOD Int. Conf. on Management of Data,
1989, pp. 243-252.

[LH 92] Lu W., Han J.: “Distance-Associated Join Indices for Spatial Range
Search”, Proc. 8th Int. Conf. on Data Engineering, Phoenix, Arizona,
1992, pp. 284-292.

[LHO 93] Lu W., Han J., Ooi B.C.: “Discovery of General Knowledge in Large
Spatial Databases”, Proc. Far East Workshop on Geographic
Information Systems, Singapore, 1993, pp. 275-289.

[MCP 93] Matheus C.J., Chan P.K., Piatetsky-Shapiro G.: “Systems for Knowledge
Discovery in Databases”, IEEE Transactions on Knowledge and Data
Engineering, Vol.5, No.6, 1993, pp. 903-913.

[Ng 96] Ng R.T.: “Spatial Data Mining: Discovering Knowledge of Clusters
from Maps”, Proc. SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, Technical Report 96-08, University
of British Columbia, Vancouver, Canada, 1996.

[NH 94] Ng R.T., Han J.: “Efficient and Effective Clustering Methods for Spatial
Data Mining”, Proc. 20th Int. Conf. on Very Large Data Bases,
Santiago, Chile, 1994, pp. 144-155.

[Rot 91] Rotem D.: “Spatial Join Indices”, Proc. 7th Int. Conf. on Data
Engineering, Kobe, Japan, 1991, pp. 500-509.

[Qui 86] Quinlan J.R.: Induction of Decision Trees, Machine learning 1, 1986, pp.
81 - 106.

