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SUMMARY

In this paper, we present a user assisted clustering technique for software architecture
recovery based on a proximity measure that we call component association. The
component association measure is computed on the shared properties among groups
of highly related system entities. In this approach, the software system is modeled as an
attributed relational graph with the software constructs (entities) represented as nodes
and data/control dependencies represented as edges. The application of data mining
techniques on the system graph allows to generate a component graph where the edges
are labeled by the association strength values among the components. An interactive
partitioning technique and environment is used to partition a system into cohesive
subsystems where the graph visualization aids and cluster quality evaluation metrics
are applied to assess and fine tune the partition by the user.
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1. Introduction

Legacy software systems are mission critical systems that are operational approximately
between 10 to 15 years [1]. Due to prolonged maintenance, such systems are difficult to
maintain, evolve, or integrate and in most cases they deviate from their original design. In
this context, architectural recovery is a key activity in supporting maintenance tasks such as
re-engineering, objectification, or restructuring.
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2 K. SARTIPI AND K. KONTOGIANNIS

According to the related literature, the clustering-based approaches to software architecture
recovery can be categorized into two groups. The first group encompass automatic or semi-
automatic techniques [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and use a similarity metric (e.g.,
association coefficient, correlation coefficient, or probabilistic measures) which reflects a
particular property among the system entities, and a clustering algorithm (e.g., agglomerative,
optimization, graph-based, or construction) to partition the system into groups of related
entities [10]. The approaches in the second group [13, 14] are based on tool usage, domain
knowledge, and visualization means, to perform an iterative user-assisted clustering process.
Such user-assisted techniques have been proven useful in handling large systems [13]. In this
paper, we aim at a clustering technique that blends the advantages of both groups and provides
means for partitioning a large monolithic software system into a collection of clusters as a
possible architecture of the system.

In the approach presented in this paper, the software system is modeled as an attributed
relational graph where the system entities are represented as nodes and data/control
dependencies are represented as edges. The application of data mining techniques on this graph
reveals associated groups of entities that possess a high-degree of data/control dependencies
among the entities. Hence, these groups are suitable to form clusters based on a similarity
metric, namely entity-association. This similarity metric encodes the structural property of the
groups of entities that are related by mazimal association. The maximal association property
is defined in the form of a maximal set of entities that all share a maximal set of features. In
a further step, the entity-association metric is used as a primitive to define the component-
association metric that measures the degree to which the entities in one component are related
to the entities in another component.

In our work, a component is defined to be either a file, or a module of system entities such as
functions, datatypes, variables, or a subsystem that is a collection of system files. This allows
us to represent a system as a component graph, where the nodes represent system files and
the labeled edges represent component association values among the files. Such association
values can be quantized and classified into four ranges (strong, medium, loose, and weak) each
representing a different strength of association between two files. In this context, we propose
an iterative partitioning technique and environment that emphasizes on pre-processing the raw
system data to a level that either the tool or the user can perform the clustering operation.
Visualization of the component graph allows the user to fine-tune the automatically generated
system partition.

We have implemented a prototype reverse engineering toolkit (Alborz [15]) to recover the
architecture of a software system in the form of components that share common features.
The toolkit presents the results in the form of HTML pages to be browsed and graphs to be
visualized, and provides modularity metrics to assess the quality of the software system and
its partitioning into subsystems.

The contributions of this paper can be summarized as follows: i) providing a user-assisted
clustering environment that can be applied on large systems; ii) proposing association-based
similarity measures between two system entities and between two components based on data
mining techniques; iii) presenting a new partitioning clustering technique based on a similarity
threshold to control the quality of the partition.
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A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 3

This paper is organized as follows. The related work is discussed in section 2. Section 3
presents an overview of the partitioning environment. Section 4 discusses the adopted graph
based system representation. Section 5 discusses software quality measure and extracting
groups of entities with maximal association using data mining techniques. Sections 6 and 7
define the association metrics between two entities and between two components, respectively.
Section 8 presents the algorithms for iterative partitioning technique. Section 9 discusses the
case studies of six software systems and evaluates the proposed partitioning technique. Finally,
section 10 concludes the paper and provides insights into the future research.

2. Related work

The closest clustering techniques to our approach in this paper pertain to the application of
“concept lattice analysis”. A concept is defined as a group of entities with maximal association
and a concept-lattice is generated to view the structure of relations among entities in a small
program. However, in medium or large software systems (+50 KLOC) the concept lattice
becomes so complex that the visual characteristics of the lattice are obscured. In such cases,
the engineers must seek automatic partitioning algorithms to assist them in finding distinct
clusters of highly related concepts. Sif [16] uses a repairing technique by adding extra relations
to make the generated concept lattice well-formed in order to provide easier partitioning. The
main drawback of this approach is the large number of generated partitions that requires high
user-involvement for reducing the number of partitions to a manageable set for investigation.
Snelting [17] uses a technique called “horizontal decomposition” to partition a lattice of
procedures and variables into modules. However, the overwhelming number of interferences
between concepts in the lattice of a real system prevents such a horizontal partitioning. In
comparison with concept lattice approaches, we define a similarity measure which encodes the
structural characteristics of the neighboring concepts and uses this metric to cluster the groups
of closely related concepts.

Mancoridis [8] proposes a method to partition a group of system files into a number of
clusters using a hill-climbing search and neighboring partitions, where the initial partition
is randomly selected. In comparison, our method computes a collection of rather separated
singleton clusters as an initial partition and the iterative partition can then proceed on
computing an optimal partition.

Tzerpos [18] uses a number of system structural properties as evidences to cluster the system
files into a hierarchy of clusters. The method uses subgraph dominator nodes to find subsystems
of almost 20 members, and builds up the hierarchy of subsystems accordingly. To simplify the
computation, the interactions of more than 20 links to/from a file are disregarded. In contrast,
our technique does not assume any pre-existing structure for the system such as directory
structure, instead relies on overall data/control flow dependencies among the system entities
to be used for clustering.

Ferneley [19] defines two sets of measures on the coupling and control flow analysis, each
classified into three measures with increasing complexity of measurements. For intra-module
control flow measures the author considers logical constructs such as selection/iteration, and
their scopes as different levels of refinement for measurement. Also for inter-module coupling
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Figure 1. The environment for software system partitioning based on component association.

the author considers the structure of data being passed, and single/multiple input as levels
of refinement to be considered. In our approach we measure the quality of the partitioning
technique by considering control-flows at the function level not logical constructs, and for
data-flow related measurements we consider structured data and multiple inputs among the
clusters.

Finally, Lakhotia [20] provides a unified framework that categorizes the different software
clustering techniques and translates them into the framework notation to be compared with.

3. Overview of the user-assisted partitioning environment

Figure 1 illustrates the proposed environment for association-based system partitioning. The
partitioning environment consists of four phases classified into two parts namely off-line and
on-line analyses.

Phase 1: Maximal association extraction. The software system (i.e., a C program) is
parsed and a database of entities and relationships in the form of abstract syntax tree
(AST) or textual formats is generated. The entity-relationship database is represented as
an attributed relational graph [21], namely the system-graph denoted as G = (N, R). The
application of data mining algorithms on this graph extracts the groups of entities with
high data/control flow dependencies. These groups of entities are related with maximal
association. This phase may take several hours to complete for a large system.
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Phase 2: Component graph generation. The group of entities with maximal association
are analyzed to compute the association among the system files and generate a component
graph G¢ = (N¢, RY). The association links between the files in G¢ are then quantized
into value ranges in order to be color-coded and visualized by graph visualization tools.
In the resulting quantized component graph the nodes represent system files and the
edges represent the in-between association strengths to be used for partitioning process.

Phase 3: System partitioning. Based on an iterative partitioning algorithm to be
discussed in this paper, the component graph G¢ is partitioned into clusters (i.e.,
subsystems of files) either automatically by tool, or manually by visualizing and
manipulating the quantized graph G¢ with color-coded edges.

Phase 4: Result evaluation. The tool analyzes the partitioned system and provides quality
evaluation of the clustered subsystems in the forms of: closeness value for each file in a
subsystem to the other files of subsystem; modularity quality of the partition; and the
graph of the clustered subsystems. The user investigates the evaluation results and, if
needed, modifies the obtained clusters to incorporate the domain knowledge and system
documentation, and consequently repeats the phases 3 and 4 until the partitioning meets
specific user criteria.

4. Graph based system representation

In a software system, the entities can be specified according to a domain model for the
corresponding programming language. These entities are instantiations of the domain model
constructs such as: function, datatype, statement, assignment, variable, file. In clustering
analysis, the granularity level of the selected source code entities depends on the purpose
of the analysis. For example, function, datatype, and variable are used for clustering at the
module level, and file is used for clustering at the system level.

Figure 2 illustrates the mappings from the entities and relationships in the domain of a
typical procedural language onto the entities and relationships in the domain that is suitable
for architectural level analysis. The entities at the architectural level constitute a subset of
the whole entities in the software system. For example, the entities such as local variables and
scalar-types are deleted at the architectural level. Each relation at the architectural level is an
aggregation of one or more relations at the software system level. For example the operation
“function foo references or updates global-variable kam” is abstracted as “F; use-V'V,;,”, where
F; and V,, are unique identifiers for “function foo” and “global-variable kam”, and use-V is an
aggregation of two relations “reference and update”. Each abstract entity or abstract relation
has three attributes label, type, and location, as defined below.

e label: for entities the label denotes: i) a full path-name as a unique name for each entity
in the software system; ii) a unique identifier to refer to an entity, e.g., F4, L6, T32; for
relations the label denotes a pair of source and sink entities that are related.
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Entities
Software System level | Architectural level
source-file “main.c” abstract-file L;
function “foo” abstract-function Fj
aggregate-type “bar’ or abstract-type T}
array-type “bar”
global-variable “kam” abstract-variable V;,
Relationships
Software System level Architectural level
function “foo” calls function “foobar” F; use-F F,
function “foo” passes, receives, or uses F; use-T Ty,
aggregate-type / array-type “bar”
function “foo” references or updates F; use-V 'V,
global-variable “kam”
source-file “main.c” defines function “foo”, L; cont-R Fj
defines aggregate-type / array-type “bar”, L; cont-R Ty,
defines global-variable “kam” L; cont-R V,,

Figure 2. Domain model used in this paper. Entities at the architectural level are a subset of the
software system entities, where L;, F}, Ty, V,, are unique entity identifiers. Each relationship at the
architectural level is an aggregation of one or more relationships in the software system.

e type: L, F, T, V are the types of entities for abstract-file, abstract-function, abstract-
type, and abstract-variable, respectively. use-F, use-T, use-V, cont-R are the types for
relations.

e Jocation: denotes the source file number and line number in file where the entity or the
relation between two entities are defined in the software system.

Attributed relational graph
In this section, we briefly introduce the underlying concept of Attributed Relational Graph
(ARG) that we use to represent a software system entities and relationships, based on the
notation presented in [21].

At the architectural level the Attributed Relational Graph of the software system is
denoted as the system-graph which is defined as a six-tuple G = (N, R, A, E, u, €) (or simply
G = (N, R)), where the nodes are entities and the edges are relationships defined at the
architectural level in Figure 2, and the attributes for nodes and edges are defined above.

A system-graph G = (N, R, A, E, i, €) is defined as:

e N: {ni,n2,...,n,} is the set of attributed nodes, or entities at the architectural level.
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Node of type: L/F/T/V

—~

Edge of type: use-F /use-T /use-V /cont-R

M (n2) = ((name, "/u/../foo"), (id, F6),
(type, F), (line#, 37), (file#, 5))

€ (rg) = ((from, n2), (to, n13), (type, use-F),
(line#, 92), (file#, 5))

Figure 3. An Attributed Relational Graph representation of a system-graph G = (N, R, A, E, u, €).

e R: {ri,ra,...,7m} is the set of attributed edges, or relationships at the architectural
level.

A: alphabet for node attribute values such as node labels and node types.

FE . alphabet for edge attribute values such as edge labels and edge types.

pw: N — (Ax AP : afunction for returning “node attribute, node attribute value”
pairs where p is a constant.

€: R— (ExE)? : afunction for returning “edge attribute, edge attribute value” pairs
where q is a constant.

Figure 3 illustrates the system-graph of a small system with 19 nodes. In the system-graph
G, examples of node and edge labeling functions u and € are as follows:

e u(n2) = ((name, “/u/.../foo”), (id, F6), (type, F), (line#, 37), (file#, 5)) indicating that
node no of the system-graph G is of type abstract-function with name “/u/.../foo” and
identifier F6 which has been defined in line 37 of the source file 5; and

e ¢(rg) = ((from,ns), (to,n13), (type, use-F), (line#,92), (file#,5)) indicating that the
edge rg is of type use-F, i.e., the software system function represented by the node ns
calls the software system function represented by the node my3; and the function-call
occurs in line 92 of file 5.

In the following sections, we apply data mining techniques on the system-graph G to extract
groups of maximally related entities.

5. Software quality measure
Coupling and cohesion are two major metrics for assessing the quality of a software system

in terms of understandability and maintainability. In the early 1970s, researchers and
practitioners noticed that software designers collect certain program parts into the same
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8 K. SARTIPI AND K. KONTOGIANNIS

module according to particular relationships between a set of actions they perform. These
relationships were organized by Stevens, Myers, Constantine, and Yourdon [22, 23] as the
levels of coupling and cohesion among or within the software systems’ modules, which are now
considered as the standard software quality measures [24].

In a software system consisting of modules, coupling is a “measure of the relative
interdependence among the modules” [24] and is measured by seven ordinal levels from the
weakest to strongest as mo-coupling, data, stamp, control, external, common, and content.
Cohesion is a “measure of the relative functional strength of a module” [24] and is
measured by seven ordinal levels from weakest to strongest as coincidental, logical, temporal,
procedural, communicational, sequential, and functional. A software system whose components
demonstrate high-cohesion and low-coupling is known as a modular system.

Cohesion (functional strength) is difficult to measure because most of the functions in a
module are composed of smaller functions, hence require to investigate a function hierarchy
for cohesion measure [25]. The functional strength must be interpreted by the software engineer,
hence cohesion is a subjective measure [26]. Recently, the researchers [25, 26, 27, 28] attempted
to provide objective measures that closely relate to the original seven levels of cohesion
proposed by Stevens et al.

Chapin [25] proposes an objective method to appraise the coupling and strength (cohesion)
of a software system component. The approach uses message tables and two decision tables
that use questions to direct the analyst or programmer to the appropriate level of the coupling
or cohesion. The use of these aids makes the appraisal process more objective and practical
than the traditional ones. Lakhotia [26] defines a number of rules of logic using the data/control
dependencies that translate the seven cohesion levels into formal description for a module to be
evaluated. Bieman [28] proposes a sophisticated intra-module cohesion measure based on data
slices to determine the extend to which a module approaches the ideal of functional cohesion.
In [27] an experimental evaluation of a group of graduate students (with the knowledge about
cohesion) was conducted to study whether or not the Stevens et al. rules can be used to
determine the cohesion of a module from its source code. The overall conclusion drawn was
that the cohesion levels are not so intuitively obvious to be used reliably. In some cases the
students confused the highest level of cohesion with the lowest level.

Misic [29] noted that the basic concepts of coupling have never been challenged and cohesion
can also be expressed in terms of coupling, such that cohesion be viewed as a close relative of
internal coupling, or a variation of it. Patel [30] uses a vector of counters for variables of each
program (function) and when the program accesses a variable the counter corresponding to
that variable in the vector is incremented. Consequently the cohesion between the programs
are calculated based on the number of shared variables and the counter for that variable.
Mancoridis [8] defines a modularity metric for a software system based on inter- /intra-module
connectivity. Lindig [17] defines the cohesion of a module in terms of sharing variables by the
module’s procedures. These authors view the cohesion of a module as a measure of “coherency’
[29], “sharing” [30, 17], or “intra-connectivity” [8] among the functions, which is considered
as a form of external property of the system functions. In this context, a number of common
attribute values among the functions can determine the cohesion as the degree of sharing
different sets of: global variable reference, function call, or data type usage.
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A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 9

The property of sharing common attributes is known as the association similarity metric in
the clustering literature [10] and are widely used in producing cohesive clusters. Two common
association-based similarity metrics are the Jaccard and matching coefficient metrics [10]. These
metrics measure the size ratio of different weighted unions/intersections of the attribute sets
of two functions. However, if groups of more than two functions are considered then a new
sharing property for the group must be defined. In this form, the maximum number of shared
attribute values among the group, known as mazimal association, is an interesting property
for defining a similarity measure among a collection of system entities, which is proposed in
this paper.

5.1. Maximal association

Informally, maximal association is defined in a group of entities in the form of a maximal set of
entities that all share the same relations to every member of another maximal set of entities.
For every set of functions, denoted as F, we can determine a set of shared entities , denoted
as £, where every function f in F has a relation rel to an entity e in £. For example, two
functions f and ¢ can share the datatype ¢ and variable v by the relations use-T and use-V,
respectively.
The operation sh-ents(F) returns the set of shared entities £ for the set F as follows:

sh-ents(F) ={e| Vfe F; Trel: X o X € {use-F, use-T, use-V} N (f, e) €rel}. (1)

Similarly, for every set £ of entities we can determine a set of functions F, where every function
f in F has a relation rel to an entity e in £. The operation sh-funcs(E) returns the set of sharing
functions F for the set £ as follows:

sh-funcs(&) = {f| VYee &; Trel: X o X € {use-F, use-T, use-V} A (f, e) €rel}. (2)
A set of functions F and a set of entities £ are related by maximal association, iff:
F = sh-funcs(§) AN &€ = sh-ents(F). (3)

In this form, no larger set of functions F' (F' D F) exists such that F' and the set of entities
€ are related by maximal association. Similarly, no larger set of entities £' (£’ D &) exists such
that F and &’ are related by maximal association.

In the following, the application of the data mining algorithm Apriori [31] in detecting
maximal association among entities is discussed.

5.2. Data mining

Data mining or Knowledge Discovery in Databases (KDD) refers to a collection of algorithms
for discovering or verifying interesting and non-trivial relations among data in a large database
[32]. A substantial body of data mining literature is based on extensions of the Apriori
algorithm by Agrawal [31], and relate to the concept of market baskets and their items in
databases. A k-itemset is a set of items with cardinality & > 0. A frequent itemset is an itemset
whose elements are contained in every basket of a group of baskets (namely supporting baskets).
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(b) Generating a frequent 3-itemset

(2) Eight Baskets of items. from three frequent 2—-itemsets.

function f1(x:foo, y:bar) = function f1 = basket 1
call function f32 (x); x: foo =
/* update global-var Z */ y: bar S
Z=Z+y; ' call function 32 (x); 2
call function F32(x) Z:=7+y; P'S

(c) Function f1 contains "use-type foo", "use-type bar", "call-func f32", and "use-var Z".

({Baskets}, {ltemset}) Fx: function
({F774, F800, F807}, {F209, F811, F812, T5, V259}) Ty: aggregate type
({F774, F798, F807}, {F209, F308, F812, V259, V312}) Vz: global variable

({F738, F788, F800}, {F171, F173, T40, V298, V324})

(d) Three frequent 5-itemsets from the application of Apriori algorithm on system data.

Figure 4. (a),(b) The notion of database baskets and frequent itemsets. (¢) The mapping of the entities
and relationships in a software system onto the baskets and items in data mining. (d) Representation
of the frequent itemsets in the system.

The cardinality of this group of baskets must be greater than a user-defined threshold called
minimum-support. The frequent itemsets are generated by the Apriori algorithm [31] that first
generates the groups of frequent itemsets and then extracts the association rules in the form
of 40% of baskets that contain the set of items X also contain the set of items Y.

Figure 4 illustrates the application of the Apriori algorithm in reverse engineering. In Figure
4(a), the market baskets and different kinds of items inside the baskets are shown, where
each element represents all items of the same kind in a basket. Figure 4(b) demonstrates one
iteration of the iterative generation of the frequent itemsets using the Apriori algorithm. The
frequent i-itemsets are computed from the frequent (i-1)-itemsets obtained in the previous
iteration. In each iteration i, the algorithm produces all frequent itemsets in the form of tuples
({baskets}, {items}) such that:

{baskets} = sh-funcs({items}) A  {items} = sh-ents({baskets}). (4)
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A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 11

Hence, the functions as baskets and the entities (i.e., functions, datatypes, variables) as items
are related by maximal association.

At the top part of Figure 4(b), three frequent 2-itemsets along with their container baskets
are shown, from which the algorithm generates a frequent 3-itemset. In this example, the
minimum-support (i.e., the minimum number of baskets) can be 3 or less. The resulting
frequent 3-itemset exists in all basket 1, 3, and 5.

Figure 4(c), demonstrates the mapping from a function definition in a software system onto
the notion of basket and items in the data mining domain. In our approach, a basket is a file
or a function and the basket items are the system functions, datatypes, and global variables
that are called or used according to the domain model represented in Figure 2. Figure 4(d)
represents a small portion of frequent 5-itemsets extracted from a software system. The first
line is interpreted as: all the functions F774, F800, F807 call functions F209, F811, F812,
and use aggregate type T5 and global variable V259. The Apriori algorithm generates all the
frequent itemsets and stores them into large groups based on the size of itemsets. The similarity
measure between two system entities are extracted by scanning the stored frequent itemsets,
which is discussed in the next section.

6. Association measure between two entities

In this section, we define entity association between two system entities based on the notion
of association in a graph.

Association in a group of graph nodes is a property, where two or more source nodes share
one or more sink nodes (through direct graph edges). A source node is a node where an edge
emanates from it. A sink node is a node where an edge points to it. In analogy with data
mining terminology, we refer to the source nodes as the “basketset” and the sink nodes as the
“itemset” . In this sense, the whole group of itemset and basketset are denoted as an associated
group.

The entity association between two system entities e; and e;, denoted as entAssoc(e;, e;), is
defined as the maximum of the association value between e; and e;, considering that e; and
e; may belong to more than one associated group g, with a different association value in each
group g, . Formally:

entAssoc(e;, ej) = maz,, (|litemset(g,)| + w * |basketset(g,)|) (5)

where, 0 < w < 1 is the weight of the sharing entities compared with the shared entities
and is discussed later. The entity association is considered as a measure of similarity between
two entities in a software system and allows to:

e identify the members of a group of highly related entities in a system.

e consider the datatypes and variables as members of a group including functions, as
opposed to considering them as attribute-values of functions which cause only the
functions to be grouped.

In general, the number of shared entities (items) contributes more on the closeness of the
entities than the number of sharing entities (baskets), if a group of entities are examined for
their similarity. We justify this property using a social analogy to software systems:
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entAssoc =4 entAssoc =5 entAssoc =4
Basketset
9x
Itemset
@ (b) y
S O Extranodes entAssoc = 3.5
Extra edges @ Shared nodes (c)

between groups

Figure 5. Illustrating the notion of entity association as a similarity measure between two entities.

“Consider 10 people that eat in the same restaurant and go to the same library. These
people can be friends or not. If the number of these people increases from 10 to 20 it does
not necessarily increase the level of mutual friendship among them. Now consider the same
10 people and increase the number of their commonalities. For ezample, suppose they also live
in the same building and go to the same club. These people have high likelihood to be friends,
since a high number of shared interests is most often an indication of a high level of friendship
among people.”

The lower values of w (close to 0) cause that the entAssoc(e;, e;) be insensitive to the number
of sharing entities in an associated group, and vice versa. Based on the empirical results and
the above mentioned property, we use a value of w = 0.5. The value of entAssoc(e;,e;) is a
positive real number which is not normalized since it measures a property in a single group of
entities, not between two groups of entities which allows to normalize the metric. Hence, its
value is not restricted between 0 and 1, instead it depends on the size and form of the group
of entities in g,. A possible way for normalization is to find the maximum of the association
values in the system and divide all other values to it.

Figure 5 illustrates the notion of entity association similarity metric using four associated
groups. In Figure 5(b) the extra nodes and edges that may exist among the nodes and edges
of an association group are shown. However, only the solid nodes are the members of the
associated group and extra edges do not affect the association value. Figure 5(c) illustrates
two associated groups g, and g, with shared nodes. The grey-color nodes are the members of
both groups with different association values. In such cases, the association value of a node is
inherited from the group with larger association value. The entity association is considered as
a measure of similarity between two entities in a software system.

7. Association measure between two components

In this section, we define component association, denoted as compAssoc(C;, C;), between two
system components C; and C; based on the similarity between two entities (entAssoc) in a
graph.
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A system component is a named grouping of the system entities such as files, functions,
aggregate types, and global variables. We say that a component “contains” the entities it
defines and each system entity can be contained in only one component. Furthermore, a
component interacts with other components through importing and ezporting of simple entities
such as functions, aggregate types and global variables.

A component C; is a member of a disjoint set of components {C1, .., C;} that constitute a
partitioning P(NN) of the system entities N according to a particular relation R among the
system entities IV, e.g., association relation.

A component C; consists of three parts: i) contains part, denoting a set of system entities
that are defined in the component Cj; ii) imports part, denoting entities that are used by the
component C; but are contained in another component C;; and iii) ezports part, denoting
entities that are contained in component C; and are used by other components.

If a component C; contains a file L; and file L; contains a simple entity F,, then

component C; also contains the simple entity Fj,. Therefore the containment relation is
transitive.
We consider two kinds of components in a software system, denoted as module and subsystem,
according to the type of system entities they contain and interact. A module M; is a
component C; that contains simple entities (functions, datatypes, variables), and imports and
exports simple entities. Therefore, a file can also be considered as a module and be treated as
a component.

A subsystem S; is a component C; that contains composite entities (files) as well as their
contained simple entities (functions, datatypes, variables), and imports and exports simple
entities. In this paper, a component is a subsystem.

The component association compAssoc(C;, C;) is computed as the average of similarities
between all pairs of entities that are made up of one entity from each component, as follows:
‘lﬁc:li”m“‘ Zfﬁf"m“‘

|C;

entAssoc(ng, nm,)

compAssoc(C;,C;) = (6)

contains

In equation (6), the first summation iterates over every entity in component C; and the
second summation iterates over every entity in component C; in order to add the similarity
values entAssoc(ny, n.,) between every pair of entities, one entity in each group, i.e., ny is
in component C; and n,, is in component C;. The term |Cj,,,,.,..| denotes the cardinality of
component C;. This equation is not symmetric with respect to the components C; and C},
i.e., compAssoc(C;,C;) # compAssoc(Cj, C;). The unit for compAssoc(C;,C;) is “association
value per entity”.

We define the notion of component graph which is central to the proposed partitioning
technique. The component graph G = (N¢, R®) is defined using the component association
values, as:

N ={C; | C; is a component}

RY = {ey | ex = (Cy,C;) is a component association link} (7
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Figure 6. (a) Distribution and (b) Quantization of the component association values in the Clips
system. (c) Strength of association between file L2 and other files in a system of six files.

where, the component association link e is annotated with the value of the
compAssoc(C;, Cj).

7.1. Component association quantization

In a component graph G¢ the values for component association are distributed over a broad
range that is not suitable for graph visualization. In order to allow a user/tool cooperative
partitioning process based on graph visualization, a quantization method is used to classify
the values of component association into four ranges strong, medium, loose, and weak (denoted
as strength of the association). FEach range can be color-coded to be viewed and interpreted in
a graph visualization tool. These ranges are defined below:

e Strong association: an indication of significant interaction among the entities of two
components. Separate groups of components where each group of component has internal
links with strong association, are proper candidates as the cores of distinct subsystems in
a system decomposition. The functionality of these core components can be investigated
to assign meaningful names for the subsystems. A strong self association of a component
C;, i.e., compAssoc(Cy, C;), indicates a high level of relationship among the entities of
C;.

e Medium association: an indication of high to medium interaction between two
components. This type of association is considered for collecting the components around
the core of a subsystem.

e Loose association: an indication of low interaction between two components. This type of
association is used for grouping the yet ungrouped components, similar to the concept of
orphan adoption [33]. The loose association may also be used for finding the commonly
used components in a system.
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A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 15

e Weak association: an indication of insignificant or purely coincidental interaction between
two components. This type of component interaction can be ignored for all practical
purposes.

The distribution of the association-link quantity versus association value is the basis for
determining the range of each association strength. According to the experimentations with a
number of systems in different domains (section 9.1), this distribution decreases very fast with
the increase of the association value (almost an inverse exponential distribution). Figure 6(a)
illustrates such distribution for the Clips system with 44 files.

In order to produce a four-range association strength diagram that traces the envelop of such
an inverse exponential distribution, we define a heuristic quantize(G®) that uses the following
constraints on the relative numbers of links (link quantity) in the consecutive ranges.

e The quantities of the strong and medium associations are almost equal, with higher
quantity for the medium association.

e The quantity of the loose associations is approximately three times higher than the
quantity of the medium association.

e The rest of the association values constitute the weak associations.

The heuristic quantize(G®) requires a system-dependent value for the quantity of an
association range to start with. We set the quantity of the strong association links to a number
between 50% to 60% of the number of the system files, which tends to produce good results.

This heuristic attempts to accommodate the distribution of the association values so that
the closest numbers to the above approximated values are achieved, as illustrated in Figure
6(b). The affect of the quantization process is to map the component association values of the
edges in the component graph G¢, from a broad range of values onto a number between 1 and
4.

Figure 6(c) demonstrates a graphical representation of the quantization of the association
values in part (a). In this example, a system of six files is considered where the association
links of file L2 on other system files is shown. File L2 has strong association on files L5 and L1,
medium association on file L3, and low association on other files. The strength of association
between file L2 and other files have been color-coded to be viewed and distinguished in a graph
visualization tool.

8. Partitional clustering technique

In this section, an automated partitional clustering technique for subsystem recovery is
discussed. In the context of software reverse engineering the clustering algorithms can be
categorized as: 1) hierarchical algorithms, where each entity is first placed in a separate cluster
and then gradually the clusters are merged into larger and larger clusters until all entities are in
a single cluster; ii) optimization algorithms, where an initial partitioning of the whole system is
considered and with iterative entity movements between clusters the clusters are improved to
an optimal partition; and iii) graph-theoretic algorithms, where an entity relationship graph of
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16 K. SARTIPI AND K. KONTOGIANNIS

the system is considered and the algorithm searches to find subgraphs with special properties
such as maximal connected subgraphs or minimal spanning trees [10].
The general form of an iterative partitioning algorithm [34, 10] used in this paper is as follows:

Algorithm: iterative partitioning (system files) =
find an initial partition of K clusters for the system files.
repeat
determine the seed point of each cluster.
move each entity to the cluster with the most similar seed point.
until no entities were relocated in this iteration.

A seed-point is an entity in a cluster whose score is an average score of the entities in that
cluster. Our approach to an iterative partitioning algorithm is summarized as follows:

e Produce an initial partition of the system files as a number of singleton clusters each
containing one seed-point, and the rest-of-system (i.e., the remaining files in the system)
as a large cluster. The seed-points are distinguished and dissimilar files which are highly
associated by other files.

e Perform an optimization operation which iteratively relocates the files (except the seed-
points) among different clusters in order to improve the partition according to the group-
average-similarity value of the clusters.

The details of the algorithms are discussed below.
8.1. Initial partitioning

The algorithm initial-partition (G¢,n) in Figure 7 generates an initial partition from the
set of system files N¢ using a scoring method to find the seed-points. In order to find a
seed-point all the files are tested. The ideal case is to find a group of seed-points whose
associated files are completely separated from each other. The first seed-point is the file with
the highest total association value of the links attached to it. When a seed-point is selected all
its corresponding association links are marked as visited to keep other seed-points apart. The
score of the subsequent seed-points decrease if their connected association links have already
been visited. The process of finding seed-points stops after finding n seed-points. At this time,
each seed-point becomes a singleton cluster and all the rest of files become one cluster called
rest-of-system. The utility function get-compAssoc-value(ey) returns the annotated compAssoc
of the link ey.

8.2. [Iterative partitioning

The algorithm iterative-partitioning(G®,n, sim) in Figure 8 requires a list of clusters in P
to start with. Therefore, either it invokes the algorithm éinitial-partition and receives a list of
singleton clusters and the rest-of-system in P, or receives an already computed partition P’
whose clusters have been merged, split, or changed. In each iteration, the algorithm computes
the average-similarity-value of every file (except the seed-point files) in the clusters to every
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Algorithm initial-partition (GY,n) =

© 00~ Ut i Wi+

DD DO DD DD N bt b b e e e e e e e
Tl W N = OO0 Ut WwNn=O

input:

G component graph consisting of all system files N and association links R
n: number of singleton clusters.

output:

P: initial partition of the system files N into n + 1 disjoint clusters of files.
local variables:

L: remaining set of system files to be used for partitioning.

L., L,: a candidate file to be tested as seed-point, and a file in N°€.

E: set of all association links to/from a candidate file L.

V: set of all already visited association links.

L, selected seed-point file.

score, scoregy: score of a candidate file L., and score of the selected seed-point sp.

P:={} V={} Ly, := nil L:=N¢
repeat
scoregp := 0.0
for L.e L do
score := 0.0
E:={e;|e,€RY A 3L, e NY o ¢, = (L.,L,) V e = (Ly, L)}
for e, € E do

a := get-compAssoc-value(ey,) % ey, is annotated with a
if ex ¢ V then
score := score + a
else
score := score + § % reduce score if e; is already visited

if score > scoreg, then
scores, = score
Ly, = L.

P:=P U {{Ls}} % {Lsp} is a singleton cluster
L:= L — {Lg}
v

=V U {er|ex€RY A 3FL, €N o e =(Lsp,Ly) V ex = (Ls,Lsp)}

n:=n-—1
until n >0 do

P:=P U {L} % L is now the rest-of-system cluster
return P

Figure 7. Algorithm initial partitioning generates the first partition of clusters.
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18 K. SARTIPI AND K. KONTOGIANNIS

Algorithm iterative-partitioning ( G¢

input:
G component graph consisting of all system files N and association links R
n: number of clusters excluding the rest-of-system.
dsim: min difference of the average-closeness of a file to self-cluster and another cluster.
This threshold allows to move a file from the self-cluster to another cluster.
output:
P: a list of disjoint clusters of files, as a partition of the system files N©.
local variables:
L.: a candidate file in the current cluster to be tested for relocation.
Csrey Ceyr : source cluster whose files are tested against the current cluster C.,;..
S, STMgpe, SUMma,: group-average-similarity of a file L.: to current cluster Cey;
to source cluster Cy,..; and to a cluster that maximizes the similarity value.
aFileMoved: a flag which is set if in an iteration a single file is moved between clusters.
global variables:
P': already computed partition P in which one or more clusters merged/split/changed.

, 1, 6szm) =

1 P := initial-partition (GY, n) \Y P:=P

2 repeat

3 aFileMoved := false

4 for i=1 to |P| do

5 Cysre := PJi]

6 for L. € (Csre — {seed-points of Cs,.}) do % get candidate file
7 Pli] :== Cspe — {L.}

8 StMypae = 0.0

9 for j=1 to |P| do

10 Cewr = P[j]

11 sim := get-average-similarity-value (L., Ceyr, G©)
12 if j=4¢ then

13 S1Mgpe = SIM

14 if sim > sim,.. then

15 SIMppaz ‘= SIM

16 m:=j % m stores the index of destination cluster
17 if simpmar — SiMgre > Odgim then

18 P[m]:=P[m] U {L.}

19 aF'ileMoved := true

20 else

21 Pli]:=Pl] U {L.}

22

23 until aFileMoved

24 return P

Figure 8. Algorithm iterative partitioning relocates the files among the clusters according to dgim,-
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cluster in the partition P to check if a move to a different cluster is needed or not, and performs
accordingly. The test-and-move operation stops when no file is moved between the clusters in
an iteration and all files remain in their own clusters, where the computed partition is returned.

The user may investigate the quality of the resulting partition according to the criteria
such as modularity quality metric or precision/recall against the system documentation. The
following operations can be performed if the partition is not satisfactory: i) merge two clusters
that are very close; ii) split a large cluster into two clusters with different seed-points; iii) fix
some files in particular clusters, so that they will not be moved around. After each of the above
operations, the algorithm must be run to rearrange the files into clusters that is optimal with
respect to the similarity threshold d4;,,. The function get-average-similarity-value computes
the similarity value of a candidate file to a cluster of files by averaging the compAssoc value
of the file to every file in the cluster. This value represents the similarity of the candidate file
to the average file in that cluster and is equivalent to defining a new seed-point in the general
partitioning algorithm discussed earlier.

8.3. Modularity quality evaluation

We use two modularity quality metrics to assess the result of the proposed partitioning
technique in section 8.2.

The first metric is defined in equation (8) and measures the modularity quality in terms
of intra-/inter-connectivity among the entities in a collection of clusters that form a system
partition as discussed in [8]. We refer to this metric as connectivity modularity-quality and
denote it as M Qcon:

where
k is the number of clusters;
e; is the number of relations among the functions, datatypes, and variables in a cluster Cj;
e;; is the number of relations among the functions, datatypes, and variables between two
clusters C;, Cj; and
N; (N;) is the number of simple entities in the cluster C; (C;).

In equation (8) the first term evaluates the average intra-connectivity among entities in a
cluster C; and the second term evaluates the average inter-connectivity among entities in every
two clusters C; and C}.

The second metric is defined in equation (9) and measures the association-based modularity
quality of a system of files or its partition into clusters and is discussed in [35]. This metric
measures the average of difference between “self-association” and “association on/by other
clusters” for a cluster in the partition. The association-based modularity metric is denoted as

MQQSSOC:
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k . .
>ii1 lcompAssoc(C;, C;) (% + ‘él’_‘)]
MQassoc - 2 (9)
such that A; = Z compAssoc(Cy, Cj, ) *|Cj,. |
m=1

where, k is the number of clusters; A; is the group-average-similarity between the cluster
C; and other linked clusters C;,, to C; by merging all linked clusters C},, into one big cluster;
and n; ; is the number of linked clusters Cj, to C;. In equation (9), the first term in the
parentheses computes the average association value of C; on its linked clusters, and the second
term computes the average association value of the linked clusters on Cj.

9. Case studies

We have implemented an interactive reverse engineering tool (Alborz [15]) to recover the
architecture of a software system as cohesive components (i.e., subsystems or modules). The
Alborz tool has been built using the Refine re-engineering toolkit [36] and uses the Refine’s
built-in parsers to parse the software systems.

The Alborz tool supports two clustering techniques, based on either a user-assisted
partitioning (discussed in this paper) or a supervised clustering [2]. The latter technique
is hierarchical, that is a system is first decomposed into subsystems of files and then each
subsystem can be decomposed into modules of functions, datatypes, and variables.

In both techniques, the tool provides metrics to assess the modularity quality of the
software system and its decomposition into subsystems or modules. The input to the tool
is an information base of entities and relationships of the software system which are extracted
from either: i) AST of the software system generated by the Refine’s built-in parser; or ii)
RSF file generated by the Rigi parser [14]. The tool provides the result of the clustering using:
i) HTML pages for the recovered clusters, tool generated metrics, and source code viewing;
and ii) graphs of boxes and arrows to be visualized by the Rigi tool, where the boxes are the
clusters and the arrows are either “resource interaction” (i.e., import/export of simple entities)
or “association links” between clusters.

The experimentations in this section are divided into three parts: first, the application of
the Apriori algorithm on the system-graph G = (N, R) and the characteristics of the extracted
associated groups are discussed; second, the user/tool collaborative system partitioning
provided by the Alborz tool is presented using two software systems; and finally, the evaluation
of the proposed partition technique on the basis of two modularity quality measures are
discussed.

The experimentations are performed on six middle-size industrial systems, namely: i) Xfig
drawing editor, ii) Clips expert system builder, iii) Bash Unix shell; iv) Apache http server;
v) Elm Unix mail system; and vi) Ghostview postscript/pdf file viewer and navigator. The
experimentations are run on a Sun ultra 10 with 440MHZ CPU, 256M memory, and 512M
swap disk space.
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Figure 9. (a) The relation-to-node ratio: 1) in the studied software systems before data mining; 2) in

the generated frequent 1-itemsets and higher; and 3) in the frequent 2-itemsets and higher. The ratio

increases in each subsequent frequent itemsets. (b) The number of generated associated groups versus

the number of nodes in the studied software systems. Systems with higher relation-to-node ratio in
part (a) generate more associated groups with a given number of nodes.

9.1. Maximal association extraction

In this group of experimentations the off-line analysis presented in section 3 is discussed. The
groups of entities with maximal association constitute the crucial data for the partitioning
process. These data are generated and stored once and are used several times.

In the off-line analysis, the main effort is focused on generating associated groups that include
all the relations use-F, use- T, use-V having the lowest possible minimum-support value, i.e., 2.
Unfortunately, the number of intermediate associated groups are very sensitive to the chosen
minimum-support value and for small values the number of groups increases very rapidly hence
they require a large swap disk and execution time.

Figure 9(a) illustrates the ratio between the number of relations of types use-F, use-T, use-V
to the number of nodes of types function, datatype, variable in each software system. This ratio
is an indication of the overall data/control flow complexity of a system. In the group of bars
labeled “system relations” the highest ratio belongs to Elm system with the % =4 and
the lowest belongs to Ghostview with ratio 2. The application of Apriori algorithm generates
the associated groups of entities from frequent 1-itemsets to frequent k-itemsets where k is the
maximum size of the extracted itemsets. As it is seen in Figure 9(a):
ratio for frequent 2-itemsets > ratio for frequent 1-itemsets > ratio for original system.
However, the number of associated groups decrease for a higher itemset size. Since the
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associated groups in frequent 1-itemsets have only one shared entity in common, it makes
sense to consider frequent 1-itemsets as noise and delete them, hence consider the associated
groups in frequent 2-itemsets and up (i.e., two, three, ... entities in common). This causes to
compute component association between system files based on only large associated groups of
entities, hence producing better partitioning results.

Figure 9(b) illustrates a comparison of the studied systems in terms of the generated groups
with maximal association versus number of entities in the systems, all having the relations
use-F, use-T, use-V and minimum-support 3.

The following observations can be made from the curve of each system in Figure 9(b): i)
the rate of generating associated groups is increasing with respect to the size of the entities,
where this increase is caused by forming new associated groups whose entities are partly in
the newly added entities and partly in the previous entities; ii) systems with higher relation-
to-node ratio in Figure 9(a) generate more associated groups with a given number of nodes;
and iii) the number of the generated groups are kept within a tractable size by this increase.

Time and space statistics
In Figure 10, the statistics pertinent to the computation time and disk space requirements for
the generated associated groups for six systems are presented.

The minimum-support number is a control mechanism to reduce the computation time of
the Apriori algorithm in generating the frequent itemsets. For the Xfig system, even though
the minimum-support threshold is increased to 7 still the maximum size of the generated
itemsets is 16 that means large associated groups have been extracted. The combination of
the maximum-itemset size and the number of extracted associated group, (i.e., 3167 for Xfig),
is a criterion for the user to assess the quality of the generated associated groups. Ideally, we
would like to generate the frequent itemsets with minimum-support 2 to take into account all
the associated groups. However, for a system with a large number of highly related associated
groups, this may cause the number of intermediate frequent itemset to explode. In such cases,
still it is possible to obtain enough relations among the system entities by multiple execution of
the Apriori algorithm with different minimum-support values, as in case of the Bash system in
Figure 10. For the Bash system, the minimum-support 3 produces 1225 associated groups with
maximum itemset size 11. However to increase the number of associated groups of entities,
the algorithm is executed again with minimum-support 2, but the execution is stopped after
generating frequent 4-itemsets, that is before the number of associated groups explodes. In this
case, the resulting associated groups produce entity association measure among those entities
that did not exist in the previous run of the algorithm with minimum-support 3. Since we
stopped the execution, the recovered association values are probably lower than the actually
values. In the case of Clips system, the minimum-support is 3 which produces 810 frequent
itemsets with different itemset sizes and max-itemset size of 16. This combination is promising
for a satisfactory analysis.

9.2. User/tool collaborative system partitioning

In this section the on-line analysis in section 3 is discussed using the Xfig system as a case
study. Xfig is an interactive drawing editor which runs under the X Windows System and
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. 44
Clips 40 951 3584 3(16) 810 (61KB) 8:53 (22, 24, 64, 944)
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Figure 10. The time and space statistics for generating groups of entities with maximal association.

The presented data include: 1) size of the systems in Kilo Lines Of Code (KLOC); 2&3) number of

nodes (functions, datatypes, variables) and relations in the system; 4) number of minimum-support

and maximum size of itemsets in the generated associated groups; 5) number of generated frequent

itemsets (associated groups) and the required disk space to store them; 6) generation time in hours

and minutes; and 7) numbers of component graph nodes (files) and edges for (Strong, Medium, Loose,
Weak) association strength ranges.

consists of 74 KLOC, 98 source files, 75 include files, 1662 functions, 1356 global variables,
and 37 aggregate types.

Figure 11 illustrates the partitioning of the quantized component graph G¢ using the graph
visualization tool Rigi [14]. In these graphs a box is either a system file or a subsystem of files
(Figure 11(c)) and a line is a quantized association link to represent the association strengths
among the files or subsystems. A line from the bottom of a box L; to the top of another box
L; represents compAssoc(L;, L;). A box L; with a crossing line from bottom to top represents
compAssoc(L;, L;).

Figure 11(a) illustrates the initial partition P of the Xfig system by applying the initial
partition algorithm (discussed in section 8.1) on the system files N“. The edges between the
Xfig files consist of strong and medium association links. The initial partition includes six
singleton clusters, each containing a seed-point, and the rest-of-system as a large cluster. The
order of the selected seed-points are from S1 to S6. Each seed-point has many links to the
files in the rest-of-system which qualifies it to be a seed-point. However, in this case study
the number of links between the seed-points is high, indicating high interaction among the
resulting subsystems.

The application of the iterative partitioning algorithm on the initial partition P, discussed
in section 8.2, is shown in Figure 11(b). In this partition, the singleton clusters have been
populated by moving the similar files from rest-of-system into them. Also, two pairs of clusters
have been merged into two cluster S1-S4 and S3-S5. The reason is that both S1 and S4 collect
the files from wutility and file manipulation subsystems of Xfig (discussed later), that suggest
to merge them into one cluster. The similar reason holds for merging S3 and S5. As a result,
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Figure 11. System partitioning of the Xfig system using the quantized component graph G¢.
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Figure 12. The analysis of the clustered subsystems of Xfig system. (a) Resulting system partitioning
of Xfig. (b) Subsystem association analysis and its link from the main page.

the Xfig files have been clustered into four subsystems and the rest-of-system cluster based on
the association strengths between files.

Figure 11(c) demonstrates the component graph for the partitioned system with strong,
medium, and loose association links between the resulting subsystems. This graph is a simple
representation of the group of association links in Figure 11(b), where, the subsystems S1-S4
and S3-S5 have strong association with subsystem S6, and the subsystem S2 and rest-of-system
are isolated. Figure 11(d) illustrates adding loose association links to Figure 11(b), where still
the weak association links are not added. It is easily seen how filtering the low association
strength links from the component graph can assist the user to investigate the system under
analysis by viewing the locus of high interaction among the system files.

HTML pages
The result of partitioning algorithm on the system files is presented by the HTML page
partition analysis in Figure 12(a). The top part of this page provides overall information
about the software system with links to different pages of information, statistics about the data
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Clustered No. of . No. of .

subsystems | files Xfig subsystems filos Precision Recall

utility & 56% U-

S1-54 26 file manipulation 32 81% 78% f-

S2 25 X-windowing 28 80% 72% w-

editing & A42% e-—

S3-S5 15 utility 37 94% 33% u-

editing & 53% e-

S6 21 drawing 29 90% 90% d-
rest-of-sys 10

Figure 13. The evaluation of the Xfig system partitioning using the Precision and Recall metrics.

mining results, statistics about the partitioning algorithm execution, and evaluation metrics
as was discussed in section 8.3. The bottom part of the page corresponds to the five clustered
subsystems S1-S4, S2, S3-S5, S6, and rest-of-system. For each subsystem, the imports/exports
parts represent the interactions of the subsystems through simple entities in the form of group
of resources (or individual resources with links to source code). For example, subsystem S1-S4
imports 21 functions from S2. Each file of subsystem S1-S4 is shown in a separate line with
the closeness value to other files in that subsystem, e.g., 0.247 for file u_elastic.c in line 1.

The association statistics and overall achieved modularity measure of the clustered
subsystems are provided via the HTML page clustered subsystems in Figure 12(b). In this page,
the association value of each subsystem on itself (self-association) and the total association
value of each subsystem on other subsystems that are linked to it (mutual association(n)) are
shown, where n is the number of linked subsystems and mutual association means that the
association value is the same in both directions. For example, line 1 that is shown below is
interpreted as: subsystem S1-S4 with 412 functions has medium SelfAssoc value, and has high
MutualAssoc value on other subsystems.

SelfAssoc | MutualAssoc(n)
1. S1.54 (F412) | 0.503 0.846(4)

Xfig partitioning evaluation
According to personal communication with the maintainer of the Xfig system [37], Xfig lacks
any documentation on the structure or implementation, and only the user manual exist.
However, a consistent naming convention is used throughout the system files which can be
referred as the structure of the system. The system naming conventions are as follows: d_x files
relate to drawing shapes; e_x files relate to editing shapes; f_x files have file-related procedures;
u_x files are utilities for creating or editing shapes ; and w_x files have X11 window calls in
them to do all of the window-related functions.

Figure 13 presents the evaluation of the Xfig system partitioning using the information
retrieval metrics Precision and Recall. The result of partitioning conforms with the above task
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Figure 14. System partitioning and evaluation of the Clips system. (a) Component graph with all
association links. (b) System partition into six clusters. (c) Partitioning evaluation using Precision
and Recall metrics.

description of the Xfig files. The result shows that two subsystems editing shapes and wutility
functions are partly clustered into two different subsystems each shown with the corresponding
Recall value. The reason is that the functionality of the drawing shape files and editing
shape files are closely related (subsystem S6) and the utility files provide services for drawing
and editing files (subsystem S3-S5). The obtained Precision and Recall values indicate that
partitioning process has recovered the Xfig subsystems with high accuracy.

9.3. System partitioning of the Clips system

The Clips system provides an environment for construction of the rule based expert systems
and is supported by an architectural manual [38] which is our reference in this experimentation.
Clips consists of 40 KLOC, 44 source files, 736 functions, 161 global variables, and 54 aggregate
types.

The application of the iterative partitioning algorithm on the Clips system is shown in
Figures 14(a) and (b). The correspondences of the partitioning result with the documentation
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Figure 15. The modularity-quality measure of five partitioned systems based on (a) inter-/intra-

connectivity among the clusters, and (b) association among the clusters. (¢) The connectivity-based
modularity measure versus the number of file movements among the clusters.

of the Clips system in terms of Precision and Recall metrics are presented in Figure 14(c),
which is considered as a very promising result.

9.4. Modularity quality evaluation

Figures 15(a) and (b) illustrate the performance of the proposed partitioning algorithm in
increasing the modularity quality of five partitioned systems based on two modularity quality
metrics defined in section 8.3. Each system is partitioned into four clusters and the modularity
values are measured versus the similarity threshold dg;,,,, where ;. is the similarity-difference
of a file to two clusters that determines whether a file moves between two clusters or not.
Three regions are considered in Figure 15(a) as follows: I) For large values of dg;, (i.e., 0.8
to 0.3) only a few files with high closeness values to the clusters are moved from the rest-
of-system, and the majority of the files remain in the rest-of-system. When highly close files
exist in each cluster the amount of intra-cluster interaction is high compared to inter-cluster
interaction, hence, the value of M Q.. is high for large values of ds;p,. IT) For medium values
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of dsim (i.e, 0.3 to 0.05) the inter-cluster interaction increases since more files are moved to
clusters, however the quality of the clusters may not be sufficiently improved. This caused a
drop in the value of M@ op- IIT) For small values of ds;,, (i-€, 0.05 to 0.001) the quality of the
clusters improve to accommodate groups of highly close files into the clusters, hence the value
of MQ.on increases again.

Figure 15(b) illustrates the same experimentation discussed above with respect to the
association-based modularity metric M Qgss0c- The value of M Q450 monotically increases
from the initial-partition of the system (range I) to its final state (range III). This indicates that
M@ ass0c considers both size and quality of the clusters, hence, evaluates a “low” modularity
value for the initial partitioning of the system, as opposed to M Qcop.

Figure 15(c) presents the improvement of the modularity value M @.,,, during the execution
of the iterative partitioning algorithm. The modularity of the partitioning changes similar to
the experimentation in Figure 15(a) discussed above.

Therefore, according to both modularity metrics MQ.,, and MQ,s50c the proposed
partitioning technique enhances the modularity value of the partitioned system.

9.5. Discussion

The quality of the resulting partition and the execution time of the iterative partitioning
technique discussed in this paper is controlled by the similarity-threshold parameter dg;p,.
As tested, in most cases the algorithm finds an optimal result (i.e., dsi = 0) with a given
initial partition after a small number of iterations. However, the tool allows the user to stop the
algorithm and check the partition if some files are relocated repeatedly among the clusters. For
this paper, we examined the proposed algorithm with several middle-size systems (-100 KLOC),
however the empirical results show that the algorithm will also terminate in a reasonable time
for larger systems, since in most cases after a few iterations the algorithm produces result.
As discussed in section 9.1 for data mining statistics, producing associated groups with the
lowest possible minimum-support value 2 is not always feasible for the large systems. This
affects the quality of the partitioning because increasing the minimum-support deletes some
association relations among the system entities. However, the tool provides means for merging
the results of data-mining with different minimum-support values, or merging the results of
data mining for different relations use-F, use-T, and use-V. These techniques recover all the
association relations that had been missing in the first execution of data mining, but the
obtained association values for the missing relations may be less than the real values that
actually exist. The main input for the proposed approach is an entity-relation database of the
software system according to the abstract domain model discussed in section 4. Therefore,
the approach is not programming language dependent. For the experimentation purposes,
currently we use Refine’s built-in C parser to parse systems written in C, however, the tool
can analyze the systems whose entities and relationships are presented as RSF format. The
approach can also be extended to analyze object-oriented systems by defining a similar entity
relation domain model for object-oriented systems.
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10. Conclusion

Software systems evolve over time and their original design is constantly modified to reflect
the result of a series of corrective, perfective, or enhancing maintenance activities. In this
paper, we argue that recovering the design of such heavily modified systems requires a user-
assisted iterative and incremental reverse engineering process that can augment the automated
recovery techniques. Specifically, we presented a user-assisted architectural design extraction
methodology which we believe it is suitable for the recovery of cohesive subsystems based on
an iterative partitioning clustering in order to obtain higher quality design for the system. In
such a design recovery environment, the tool supplies pre-processed system information, using
data mining and association metrics, to enable the user to obtain insight into the design of the
system. Entity and component association metrics measure the maximal association among
the system entities or components as the means to cluster the components into subsystems.
Finally, a quantization heuristic converts the broad range of the association values among the
components into four ranges, which facilitate the system graph visualization and clustering
process. Experimentation with six middle size systems provided an evaluation of the proposed
approach with respect to the accuracy of the proposed approach.

The next steps for this research include the investigation of constraint-based and pattern-
based clustering where the user imposes certain constrained criteria in the form of a query
or a pattern that the clustering result should comply with. Moreover, we would like to
investigate requirement-driven clustering techniques where the clustering process is fine-tuned
for obtaining a system partition that complies with specific non-functional requirements (e.g.,
modularity, adaptability).
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