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2 K. SARTIPI AND K. KONTOGIANNISA

ording to the related literature, the 
lustering-based approa
hes to software ar
hite
turere
overy 
an be 
ategorized into two groups. The �rst group en
ompass automati
 or semi-automati
 te
hniques [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12℄ and use a similarity metri
 (e.g.,asso
iation 
oeÆ
ient, 
orrelation 
oeÆ
ient, or probabilisti
 measures) whi
h re
e
ts aparti
ular property among the system entities, and a 
lustering algorithm (e.g., agglomerative,optimization, graph-based, or 
onstru
tion) to partition the system into groups of relatedentities [10℄. The approa
hes in the se
ond group [13, 14℄ are based on tool usage, domainknowledge, and visualization means, to perform an iterative user-assisted 
lustering pro
ess.Su
h user-assisted te
hniques have been proven useful in handling large systems [13℄. In thispaper, we aim at a 
lustering te
hnique that blends the advantages of both groups and providesmeans for partitioning a large monolithi
 software system into a 
olle
tion of 
lusters as apossible ar
hite
ture of the system.In the approa
h presented in this paper, the software system is modeled as an attributedrelational graph where the system entities are represented as nodes and data/
ontroldependen
ies are represented as edges. The appli
ation of data mining te
hniques on this graphreveals asso
iated groups of entities that possess a high-degree of data/
ontrol dependen
iesamong the entities. Hen
e, these groups are suitable to form 
lusters based on a similaritymetri
, namely entity-asso
iation. This similarity metri
 en
odes the stru
tural property of thegroups of entities that are related by maximal asso
iation. The maximal asso
iation propertyis de�ned in the form of a maximal set of entities that all share a maximal set of features. Ina further step, the entity-asso
iation metri
 is used as a primitive to de�ne the 
omponent-asso
iation metri
 that measures the degree to whi
h the entities in one 
omponent are relatedto the entities in another 
omponent.In our work, a 
omponent is de�ned to be either a �le, or a module of system entities su
h asfun
tions, datatypes, variables, or a subsystem that is a 
olle
tion of system �les. This allowsus to represent a system as a 
omponent graph, where the nodes represent system �les andthe labeled edges represent 
omponent asso
iation values among the �les. Su
h asso
iationvalues 
an be quantized and 
lassi�ed into four ranges (strong, medium, loose, and weak) ea
hrepresenting a di�erent strength of asso
iation between two �les. In this 
ontext, we proposean iterative partitioning te
hnique and environment that emphasizes on pre-pro
essing the rawsystem data to a level that either the tool or the user 
an perform the 
lustering operation.Visualization of the 
omponent graph allows the user to �ne-tune the automati
ally generatedsystem partition.We have implemented a prototype reverse engineering toolkit (Alborz [15℄) to re
over thear
hite
ture of a software system in the form of 
omponents that share 
ommon features.The toolkit presents the results in the form of HTML pages to be browsed and graphs to bevisualized, and provides modularity metri
s to assess the quality of the software system andits partitioning into subsystems.The 
ontributions of this paper 
an be summarized as follows: i) providing a user-assisted
lustering environment that 
an be applied on large systems; ii) proposing asso
iation-basedsimilarity measures between two system entities and between two 
omponents based on datamining te
hniques; iii) presenting a new partitioning 
lustering te
hnique based on a similaritythreshold to 
ontrol the quality of the partition.Copyright 
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A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 3This paper is organized as follows. The related work is dis
ussed in se
tion 2. Se
tion 3presents an overview of the partitioning environment. Se
tion 4 dis
usses the adopted graphbased system representation. Se
tion 5 dis
usses software quality measure and extra
tinggroups of entities with maximal asso
iation using data mining te
hniques. Se
tions 6 and 7de�ne the asso
iation metri
s between two entities and between two 
omponents, respe
tively.Se
tion 8 presents the algorithms for iterative partitioning te
hnique. Se
tion 9 dis
usses the
ase studies of six software systems and evaluates the proposed partitioning te
hnique. Finally,se
tion 10 
on
ludes the paper and provides insights into the future resear
h.2. Related workThe 
losest 
lustering te
hniques to our approa
h in this paper pertain to the appli
ation of\
on
ept latti
e analysis". A 
on
ept is de�ned as a group of entities with maximal asso
iationand a 
on
ept-latti
e is generated to view the stru
ture of relations among entities in a smallprogram. However, in medium or large software systems (+50 KLOC) the 
on
ept latti
ebe
omes so 
omplex that the visual 
hara
teristi
s of the latti
e are obs
ured. In su
h 
ases,the engineers must seek automati
 partitioning algorithms to assist them in �nding distin
t
lusters of highly related 
on
epts. Sif [16℄ uses a repairing te
hnique by adding extra relationsto make the generated 
on
ept latti
e well-formed in order to provide easier partitioning. Themain drawba
k of this approa
h is the large number of generated partitions that requires highuser-involvement for redu
ing the number of partitions to a manageable set for investigation.Snelting [17℄ uses a te
hnique 
alled \horizontal de
omposition" to partition a latti
e ofpro
edures and variables into modules. However, the overwhelming number of interferen
esbetween 
on
epts in the latti
e of a real system prevents su
h a horizontal partitioning. In
omparison with 
on
ept latti
e approa
hes, we de�ne a similarity measure whi
h en
odes thestru
tural 
hara
teristi
s of the neighboring 
on
epts and uses this metri
 to 
luster the groupsof 
losely related 
on
epts.Man
oridis [8℄ proposes a method to partition a group of system �les into a number of
lusters using a hill-
limbing sear
h and neighboring partitions, where the initial partitionis randomly sele
ted. In 
omparison, our method 
omputes a 
olle
tion of rather separatedsingleton 
lusters as an initial partition and the iterative partition 
an then pro
eed on
omputing an optimal partition.Tzerpos [18℄ uses a number of system stru
tural properties as eviden
es to 
luster the system�les into a hierar
hy of 
lusters. The method uses subgraph dominator nodes to �nd subsystemsof almost 20 members, and builds up the hierar
hy of subsystems a

ordingly. To simplify the
omputation, the intera
tions of more than 20 links to/from a �le are disregarded. In 
ontrast,our te
hnique does not assume any pre-existing stru
ture for the system su
h as dire
torystru
ture, instead relies on overall data/
ontrol 
ow dependen
ies among the system entitiesto be used for 
lustering.Ferneley [19℄ de�nes two sets of measures on the 
oupling and 
ontrol 
ow analysis, ea
h
lassi�ed into three measures with in
reasing 
omplexity of measurements. For intra-module
ontrol 
ow measures the author 
onsiders logi
al 
onstru
ts su
h as sele
tion/iteration, andtheir s
opes as di�erent levels of re�nement for measurement. Also for inter-module 
ouplingCopyright 
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4 K. SARTIPI AND K. KONTOGIANNIS
User

AST
engine

Analysis

C / Pascal / ...

On-line analysis

Parse

RSF

mining
Data 

Off-line analysis

Phase 3: System partitioning

Phase 1: Maximal association
extraction

Phase 4: Result evaluation

Entity groups with

Phase 2: Component graph generation

maximal assocationFigure 1. The environment for software system partitioning based on 
omponent asso
iation.the author 
onsiders the stru
ture of data being passed, and single/multiple input as levelsof re�nement to be 
onsidered. In our approa
h we measure the quality of the partitioningte
hnique by 
onsidering 
ontrol-
ows at the fun
tion level not logi
al 
onstru
ts, and fordata-
ow related measurements we 
onsider stru
tured data and multiple inputs among the
lusters.Finally, Lakhotia [20℄ provides a uni�ed framework that 
ategorizes the di�erent software
lustering te
hniques and translates them into the framework notation to be 
ompared with.3. Overview of the user-assisted partitioning environmentFigure 1 illustrates the proposed environment for asso
iation-based system partitioning. Thepartitioning environment 
onsists of four phases 
lassi�ed into two parts namely o�-line andon-line analyses.Phase 1: Maximal asso
iation extra
tion. The software system (i.e., a C program) isparsed and a database of entities and relationships in the form of abstra
t syntax tree(AST) or textual formats is generated. The entity-relationship database is represented asan attributed relational graph [21℄, namely the system-graph denoted as G = (N;R). Theappli
ation of data mining algorithms on this graph extra
ts the groups of entities withhigh data/
ontrol 
ow dependen
ies. These groups of entities are related with maximalasso
iation. This phase may take several hours to 
omplete for a large system.Copyright 
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A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 5Phase 2: Component graph generation. The group of entities with maximal asso
iationare analyzed to 
ompute the asso
iation among the system �les and generate a 
omponentgraph GC = (NC ; RC). The asso
iation links between the �les in GC are then quantizedinto value ranges in order to be 
olor-
oded and visualized by graph visualization tools.In the resulting quantized 
omponent graph the nodes represent system �les and theedges represent the in-between asso
iation strengths to be used for partitioning pro
ess.Phase 3: System partitioning. Based on an iterative partitioning algorithm to bedis
ussed in this paper, the 
omponent graph GC is partitioned into 
lusters (i.e.,subsystems of �les) either automati
ally by tool, or manually by visualizing andmanipulating the quantized graph GC with 
olor-
oded edges.Phase 4: Result evaluation. The tool analyzes the partitioned system and provides qualityevaluation of the 
lustered subsystems in the forms of: 
loseness value for ea
h �le in asubsystem to the other �les of subsystem; modularity quality of the partition; and thegraph of the 
lustered subsystems. The user investigates the evaluation results and, ifneeded, modi�es the obtained 
lusters to in
orporate the domain knowledge and systemdo
umentation, and 
onsequently repeats the phases 3 and 4 until the partitioning meetsspe
i�
 user 
riteria.4. Graph based system representationIn a software system, the entities 
an be spe
i�ed a

ording to a domain model for the
orresponding programming language. These entities are instantiations of the domain model
onstru
ts su
h as: fun
tion, datatype, statement, assignment, variable, �le. In 
lusteringanalysis, the granularity level of the sele
ted sour
e 
ode entities depends on the purposeof the analysis. For example, fun
tion, datatype, and variable are used for 
lustering at themodule level, and �le is used for 
lustering at the system level.Figure 2 illustrates the mappings from the entities and relationships in the domain of atypi
al pro
edural language onto the entities and relationships in the domain that is suitablefor ar
hite
tural level analysis. The entities at the ar
hite
tural level 
onstitute a subset ofthe whole entities in the software system. For example, the entities su
h as lo
al variables ands
alar-types are deleted at the ar
hite
tural level. Ea
h relation at the ar
hite
tural level is anaggregation of one or more relations at the software system level. For example the operation\fun
tion foo referen
es or updates global-variable kam" is abstra
ted as \Fj use-V Vm", whereFj and Vm are unique identi�ers for \fun
tion foo" and \global-variable kam", and use-V is anaggregation of two relations \referen
e and update". Ea
h abstra
t entity or abstra
t relationhas three attributes label, type, and lo
ation, as de�ned below.� label: for entities the label denotes: i) a full path-name as a unique name for ea
h entityin the software system; ii) a unique identi�er to refer to an entity, e.g., F4, L6, T32; forrelations the label denotes a pair of sour
e and sink entities that are related.Copyright 

 2002 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pra
t. 2002; 00:1{32Prepared using smrauth.
ls



6 K. SARTIPI AND K. KONTOGIANNIS EntitiesSoftware System level Ar
hite
tural levelsour
e-�le \main.
" abstra
t-�le Lifun
tion \foo" abstra
t-fun
tion Fjaggregate-type \bar" or abstra
t-type Tkarray-type \bar"global-variable \kam" abstra
t-variable VmRelationshipsSoftware System level Ar
hite
tural levelfun
tion \foo" 
alls fun
tion \foobar" Fj use-F Fxfun
tion \foo" passes, re
eives, or uses Fj use-T Tkaggregate-type / array-type \bar"fun
tion \foo" referen
es or updates Fj use-V Vmglobal-variable \kam"sour
e-�le \main.
" de�nes fun
tion \foo", Li 
ont-R Fjde�nes aggregate-type / array-type \bar", Li 
ont-R Tkde�nes global-variable \kam" Li 
ont-R VmFigure 2. Domain model used in this paper. Entities at the ar
hite
tural level are a subset of thesoftware system entities, where Li; Fj ; Tk; Vm are unique entity identi�ers. Ea
h relationship at thear
hite
tural level is an aggregation of one or more relationships in the software system.� type: L, F, T, V are the types of entities for abstra
t-�le, abstra
t-fun
tion, abstra
t-type, and abstra
t-variable, respe
tively. use-F, use-T, use-V, 
ont-R are the types forrelations.� lo
ation: denotes the sour
e �le number and line number in �le where the entity or therelation between two entities are de�ned in the software system.Attributed relational graphIn this se
tion, we brie
y introdu
e the underlying 
on
ept of Attributed Relational Graph(ARG) that we use to represent a software system entities and relationships, based on thenotation presented in [21℄.At the ar
hite
tural level the Attributed Relational Graph of the software system isdenoted as the system-graph whi
h is de�ned as a six-tuple G = (N;R;A;E; �; �) (or simplyG = (N;R)), where the nodes are entities and the edges are relationships de�ned at thear
hite
tural level in Figure 2, and the attributes for nodes and edges are de�ned above.A system-graph G = (N;R;A;E; �; �) is de�ned as:� N : fn1; n2; :::; nng is the set of attributed nodes, or entities at the ar
hite
tural level.Copyright 

 2002 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pra
t. 2002; 00:1{32Prepared using smrauth.
ls



A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 7
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 Node of type: L / F / T / V

Edge of type: use-F / use-T / use-V / cont-R

Figure 3. An Attributed Relational Graph representation of a system-graph G = (N;R;A;E; �; �).� R : fr1; r2; :::; rmg is the set of attributed edges, or relationships at the ar
hite
turallevel.� A : alphabet for node attribute values su
h as node labels and node types.� E : alphabet for edge attribute values su
h as edge labels and edge types.� � : N ! (A � A)p : a fun
tion for returning \node attribute, node attribute value"pairs where p is a 
onstant.� � : R! (E�E)q : a fun
tion for returning \edge attribute, edge attribute value" pairswhere q is a 
onstant.Figure 3 illustrates the system-graph of a small system with 19 nodes. In the system-graphG, examples of node and edge labeling fun
tions � and � are as follows:� �(n2) = ((name, \/u/.../foo"), (id, F6), (type, F), (line#, 37), (�le#, 5)) indi
ating thatnode n2 of the system-graph G is of type abstra
t-fun
tion with name \/u/.../foo" andidenti�er F6 whi
h has been de�ned in line 37 of the sour
e �le 5; and� �(r8) = ((from; n2); (to; n13); (type; use-F); (line#; 92); (file#; 5)) indi
ating that theedge r8 is of type use-F, i.e., the software system fun
tion represented by the node n2
alls the software system fun
tion represented by the node n13; and the fun
tion-
allo

urs in line 92 of �le 5.In the following se
tions, we apply data mining te
hniques on the system-graph G to extra
tgroups of maximally related entities.5. Software quality measureCoupling and 
ohesion are two major metri
s for assessing the quality of a software systemin terms of understandability and maintainability. In the early 1970s, resear
hers andpra
titioners noti
ed that software designers 
olle
t 
ertain program parts into the sameCopyright 
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8 K. SARTIPI AND K. KONTOGIANNISmodule a

ording to parti
ular relationships between a set of a
tions they perform. Theserelationships were organized by Stevens, Myers, Constantine, and Yourdon [22, 23℄ as thelevels of 
oupling and 
ohesion among or within the software systems' modules, whi
h are now
onsidered as the standard software quality measures [24℄.In a software system 
onsisting of modules, 
oupling is a \measure of the relativeinterdependen
e among the modules" [24℄ and is measured by seven ordinal levels from theweakest to strongest as no-
oupling, data, stamp, 
ontrol, external, 
ommon, and 
ontent.Cohesion is a \measure of the relative fun
tional strength of a module" [24℄ and ismeasured by seven ordinal levels from weakest to strongest as 
oin
idental, logi
al, temporal,pro
edural, 
ommuni
ational, sequential, and fun
tional. A software system whose 
omponentsdemonstrate high-
ohesion and low-
oupling is known as a modular system.Cohesion (fun
tional strength) is diÆ
ult to measure be
ause most of the fun
tions in amodule are 
omposed of smaller fun
tions, hen
e require to investigate a fun
tion hierar
hyfor 
ohesion measure [25℄. The fun
tional strength must be interpreted by the software engineer,hen
e 
ohesion is a subje
tive measure [26℄. Re
ently, the resear
hers [25, 26, 27, 28℄ attemptedto provide obje
tive measures that 
losely relate to the original seven levels of 
ohesionproposed by Stevens et al.Chapin [25℄ proposes an obje
tive method to appraise the 
oupling and strength (
ohesion)of a software system 
omponent. The approa
h uses message tables and two de
ision tablesthat use questions to dire
t the analyst or programmer to the appropriate level of the 
ouplingor 
ohesion. The use of these aids makes the appraisal pro
ess more obje
tive and pra
ti
althan the traditional ones. Lakhotia [26℄ de�nes a number of rules of logi
 using the data/
ontroldependen
ies that translate the seven 
ohesion levels into formal des
ription for a module to beevaluated. Bieman [28℄ proposes a sophisti
ated intra-module 
ohesion measure based on datasli
es to determine the extend to whi
h a module approa
hes the ideal of fun
tional 
ohesion.In [27℄ an experimental evaluation of a group of graduate students (with the knowledge about
ohesion) was 
ondu
ted to study whether or not the Stevens et al. rules 
an be used todetermine the 
ohesion of a module from its sour
e 
ode. The overall 
on
lusion drawn wasthat the 
ohesion levels are not so intuitively obvious to be used reliably. In some 
ases thestudents 
onfused the highest level of 
ohesion with the lowest level.Misi
 [29℄ noted that the basi
 
on
epts of 
oupling have never been 
hallenged and 
ohesion
an also be expressed in terms of 
oupling, su
h that 
ohesion be viewed as a 
lose relative ofinternal 
oupling, or a variation of it. Patel [30℄ uses a ve
tor of 
ounters for variables of ea
hprogram (fun
tion) and when the program a

esses a variable the 
ounter 
orresponding tothat variable in the ve
tor is in
remented. Consequently the 
ohesion between the programsare 
al
ulated based on the number of shared variables and the 
ounter for that variable.Man
oridis [8℄ de�nes a modularity metri
 for a software system based on inter-/intra-module
onne
tivity. Lindig [17℄ de�nes the 
ohesion of a module in terms of sharing variables by themodule's pro
edures. These authors view the 
ohesion of a module as a measure of \
oheren
y"[29℄, \sharing" [30, 17℄, or \intra-
onne
tivity" [8℄ among the fun
tions, whi
h is 
onsideredas a form of external property of the system fun
tions. In this 
ontext, a number of 
ommonattribute values among the fun
tions 
an determine the 
ohesion as the degree of sharingdi�erent sets of: global variable referen
e, fun
tion 
all, or data type usage.Copyright 
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A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 9The property of sharing 
ommon attributes is known as the asso
iation similarity metri
 inthe 
lustering literature [10℄ and are widely used in produ
ing 
ohesive 
lusters. Two 
ommonasso
iation-based similarity metri
s are the Ja

ard andmat
hing 
oeÆ
ientmetri
s [10℄. Thesemetri
s measure the size ratio of di�erent weighted unions/interse
tions of the attribute setsof two fun
tions. However, if groups of more than two fun
tions are 
onsidered then a newsharing property for the group must be de�ned. In this form, the maximum number of sharedattribute values among the group, known as maximal asso
iation, is an interesting propertyfor de�ning a similarity measure among a 
olle
tion of system entities, whi
h is proposed inthis paper.5.1. Maximal asso
iationInformally, maximal asso
iation is de�ned in a group of entities in the form of a maximal set ofentities that all share the same relations to every member of another maximal set of entities.For every set of fun
tions, denoted as F , we 
an determine a set of shared entities , denotedas E , where every fun
tion f in F has a relation rel to an entity e in E . For example, twofun
tions f and g 
an share the datatype t and variable v by the relations use-T and use-V,respe
tively.The operation sh-ents(F) returns the set of shared entities E for the set F as follows:sh-ents(F) = fe j 8f 2 F ; 9rel : X � X 2 fuse-F, use-T, use-Vg ^ (f; e) 2 relg: (1)Similarly, for every set E of entities we 
an determine a set of fun
tions F , where every fun
tionf in F has a relation rel to an entity e in E . The operation sh-fun
s(E) returns the set of sharingfun
tions F for the set E as follows:sh-fun
s(E) = ff j 8e 2 E ; 9rel : X � X 2 fuse-F, use-T, use-Vg ^ (f; e) 2 relg: (2)A set of fun
tions F and a set of entities E are related by maximal asso
iation, i�:F = sh-fun
s(E) ^ E = sh-ents(F): (3)In this form, no larger set of fun
tions F 0 (F 0 � F) exists su
h that F 0 and the set of entitiesE are related by maximal asso
iation. Similarly, no larger set of entities E 0 (E 0 � E) exists su
hthat F and E 0 are related by maximal asso
iation.In the following, the appli
ation of the data mining algorithm Apriori [31℄ in dete
tingmaximal asso
iation among entities is dis
ussed.5.2. Data miningData mining or Knowledge Dis
overy in Databases (KDD) refers to a 
olle
tion of algorithmsfor dis
overing or verifying interesting and non-trivial relations among data in a large database[32℄. A substantial body of data mining literature is based on extensions of the Apriorialgorithm by Agrawal [31℄, and relate to the 
on
ept of market baskets and their items indatabases. A k-itemset is a set of items with 
ardinality k > 0. A frequent itemset is an itemsetwhose elements are 
ontained in every basket of a group of baskets (namely supporting baskets).Copyright 
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10 K. SARTIPI AND K. KONTOGIANNIS
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Vz:  global variable

Ty:  aggregate type

Fx:  function

({F738,  F788,  F800},   {F171,  F173,  T40,  V298,  V324})

({F774,  F798,  F807},  {F209,  F308,  F812,  V259,  V312})

({F774,  F800,  F807},  {F209,  F811,  F812,  T5,  V259})

(d) Three frequent 5−itemsets from the application of Apriori algorithm on system data.

({Baskets},  {Itemset})

ItemsetBaskets

1,  3,  4,  5

1,  2,  3,  5,  8

1,  3,  5,  6

1,  3,  5

from three frequent 2−itemsets.

(b) Generating a frequent 3−itemset

32 4

(a) Eight Baskets of items.
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��
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��
��

Z := Z + y;

Z := Z + y;  call function f32 (x);

(c) Function f1 contains "use−type foo", "use−type bar", "call−func f32", and  "use−var Z".

call function f32 (x);

function f1 =  basket 1function  f1(x:foo, y:bar) =

/* update global−var Z */

.....
call function F32(x)
.....

.....
x: foo

y: bar
��
��
��
��

5 876

���
���
���

���
���
���

��
��
��
��

Figure 4. (a),(b) The notion of database baskets and frequent itemsets. (
) The mapping of the entitiesand relationships in a software system onto the baskets and items in data mining. (d) Representationof the frequent itemsets in the system.The 
ardinality of this group of baskets must be greater than a user-de�ned threshold 
alledminimum-support. The frequent itemsets are generated by the Apriori algorithm [31℄ that �rstgenerates the groups of frequent itemsets and then extra
ts the asso
iation rules in the formof 40% of baskets that 
ontain the set of items X also 
ontain the set of items Y .Figure 4 illustrates the appli
ation of the Apriori algorithm in reverse engineering. In Figure4(a), the market baskets and di�erent kinds of items inside the baskets are shown, whereea
h element represents all items of the same kind in a basket. Figure 4(b) demonstrates oneiteration of the iterative generation of the frequent itemsets using the Apriori algorithm. Thefrequent i-itemsets are 
omputed from the frequent (i-1)-itemsets obtained in the previousiteration. In ea
h iteration i, the algorithm produ
es all frequent itemsets in the form of tuples(fbasketsg, fitemsg) su
h that:fbasketsg = sh-fun
s(fitemsg) ^ fitemsg = sh-ents(fbasketsg): (4)Copyright 
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A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 11Hen
e, the fun
tions as baskets and the entities (i.e., fun
tions, datatypes, variables) as itemsare related by maximal asso
iation.At the top part of Figure 4(b), three frequent 2-itemsets along with their 
ontainer basketsare shown, from whi
h the algorithm generates a frequent 3-itemset. In this example, theminimum-support (i.e., the minimum number of baskets) 
an be 3 or less. The resultingfrequent 3-itemset exists in all basket 1, 3, and 5.Figure 4(
), demonstrates the mapping from a fun
tion de�nition in a software system ontothe notion of basket and items in the data mining domain. In our approa
h, a basket is a �leor a fun
tion and the basket items are the system fun
tions, datatypes, and global variablesthat are 
alled or used a

ording to the domain model represented in Figure 2. Figure 4(d)represents a small portion of frequent 5-itemsets extra
ted from a software system. The �rstline is interpreted as: all the fun
tions F774, F800, F807 
all fun
tions F209, F811, F812,and use aggregate type T5 and global variable V259. The Apriori algorithm generates all thefrequent itemsets and stores them into large groups based on the size of itemsets. The similaritymeasure between two system entities are extra
ted by s
anning the stored frequent itemsets,whi
h is dis
ussed in the next se
tion.6. Asso
iation measure between two entitiesIn this se
tion, we de�ne entity asso
iation between two system entities based on the notionof asso
iation in a graph.Asso
iation in a group of graph nodes is a property, where two or more sour
e nodes shareone or more sink nodes (through dire
t graph edges). A sour
e node is a node where an edgeemanates from it. A sink node is a node where an edge points to it. In analogy with datamining terminology, we refer to the sour
e nodes as the \basketset" and the sink nodes as the\itemset". In this sense, the whole group of itemset and basketset are denoted as an asso
iatedgroup.The entity asso
iation between two system entities ei and ej , denoted as entAsso
(ei; ej), isde�ned as the maximum of the asso
iation value between ei and ej , 
onsidering that ei andej may belong to more than one asso
iated group gx with a di�erent asso
iation value in ea
hgroup gx. Formally:entAsso
(ei; ej) = maxgx (jitemset(gx)j+ w � jbasketset(gx)j) (5)where, 0 < w < 1 is the weight of the sharing entities 
ompared with the shared entitiesand is dis
ussed later. The entity asso
iation is 
onsidered as a measure of similarity betweentwo entities in a software system and allows to:� identify the members of a group of highly related entities in a system.� 
onsider the datatypes and variables as members of a group in
luding fun
tions, asopposed to 
onsidering them as attribute-values of fun
tions whi
h 
ause only thefun
tions to be grouped.In general, the number of shared entities (items) 
ontributes more on the 
loseness of theentities than the number of sharing entities (baskets), if a group of entities are examined fortheir similarity. We justify this property using a so
ial analogy to software systems:Copyright 
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12 K. SARTIPI AND K. KONTOGIANNIS
(a) (b) 

Itemset

Basketset

(c) 

g

g

y

x

Extra edges

Extra nodes

Shared nodes 
between groups

entAssoc = 3.5

entAssoc = 4entAssoc = 5entAssoc = 4

Figure 5. Illustrating the notion of entity asso
iation as a similarity measure between two entities.\Consider 10 people that eat in the same restaurant and go to the same library. Thesepeople 
an be friends or not. If the number of these people in
reases from 10 to 20 it doesnot ne
essarily in
rease the level of mutual friendship among them. Now 
onsider the same10 people and in
rease the number of their 
ommonalities. For example, suppose they also livein the same building and go to the same 
lub. These people have high likelihood to be friends,sin
e a high number of shared interests is most often an indi
ation of a high level of friendshipamong people."The lower values of w (
lose to 0) 
ause that the entAsso
(ei; ej) be insensitive to the numberof sharing entities in an asso
iated group, and vi
e versa. Based on the empiri
al results andthe above mentioned property, we use a value of w = 0:5. The value of entAsso
(ei; ej) is apositive real number whi
h is not normalized sin
e it measures a property in a single group ofentities, not between two groups of entities whi
h allows to normalize the metri
. Hen
e, itsvalue is not restri
ted between 0 and 1, instead it depends on the size and form of the groupof entities in gx. A possible way for normalization is to �nd the maximum of the asso
iationvalues in the system and divide all other values to it.Figure 5 illustrates the notion of entity asso
iation similarity metri
 using four asso
iatedgroups. In Figure 5(b) the extra nodes and edges that may exist among the nodes and edgesof an asso
iation group are shown. However, only the solid nodes are the members of theasso
iated group and extra edges do not a�e
t the asso
iation value. Figure 5(
) illustratestwo asso
iated groups gx and gy with shared nodes. The grey-
olor nodes are the members ofboth groups with di�erent asso
iation values. In su
h 
ases, the asso
iation value of a node isinherited from the group with larger asso
iation value. The entity asso
iation is 
onsidered asa measure of similarity between two entities in a software system.7. Asso
iation measure between two 
omponentsIn this se
tion, we de�ne 
omponent asso
iation, denoted as 
ompAsso
(Ci; Cj), between twosystem 
omponents Ci and Cj based on the similarity between two entities (entAsso
) in agraph.Copyright 
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A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 13A system 
omponent is a named grouping of the system entities su
h as �les, fun
tions,aggregate types, and global variables. We say that a 
omponent \
ontains" the entities itde�nes and ea
h system entity 
an be 
ontained in only one 
omponent. Furthermore, a
omponent intera
ts with other 
omponents through importing and exporting of simple entitiessu
h as fun
tions, aggregate types and global variables.A 
omponent Ci is a member of a disjoint set of 
omponents fC1; ::; Clg that 
onstitute apartitioning P (N) of the system entities N a

ording to a parti
ular relation R among thesystem entities N , e.g., asso
iation relation.A 
omponent Ci 
onsists of three parts: i) 
ontains part, denoting a set of system entitiesthat are de�ned in the 
omponent Ci; ii) imports part, denoting entities that are used by the
omponent Ci but are 
ontained in another 
omponent Cj ; and iii) exports part, denotingentities that are 
ontained in 
omponent Ci and are used by other 
omponents.If a 
omponent Ci 
ontains a �le Lk and �le Lk 
ontains a simple entity Fm then
omponent Ci also 
ontains the simple entity Fm. Therefore the 
ontainment relation istransitive.We 
onsider two kinds of 
omponents in a software system, denoted as module and subsystem,a

ording to the type of system entities they 
ontain and intera
t. A module Mi is a
omponent Ci that 
ontains simple entities (fun
tions, datatypes, variables), and imports andexports simple entities. Therefore, a �le 
an also be 
onsidered as a module and be treated asa 
omponent.A subsystem Si is a 
omponent Ci that 
ontains 
omposite entities (�les) as well as their
ontained simple entities (fun
tions, datatypes, variables), and imports and exports simpleentities. In this paper, a 
omponent is a subsystem.The 
omponent asso
iation 
ompAsso
(Ci; Cj) is 
omputed as the average of similaritiesbetween all pairs of entities that are made up of one entity from ea
h 
omponent, as follows:
ompAsso
(Ci; Cj) = PjCi
ontains jk=1 PjCj
ontains jm=1 entAsso
(nk; nm)jCj
ontains j : (6)In equation (6), the �rst summation iterates over every entity in 
omponent Ci and these
ond summation iterates over every entity in 
omponent Cj in order to add the similarityvalues entAsso
(nk; nm) between every pair of entities, one entity in ea
h group, i.e., nk isin 
omponent Ci and nm is in 
omponent Cj . The term jCj
ontains j denotes the 
ardinality of
omponent Cj . This equation is not symmetri
 with respe
t to the 
omponents Ci and Cj ,i.e., 
ompAsso
(Ci; Cj) 6= 
ompAsso
(Cj ; Ci). The unit for 
ompAsso
(Ci; Cj) is \asso
iationvalue per entity".We de�ne the notion of 
omponent graph whi
h is 
entral to the proposed partitioningte
hnique. The 
omponent graph GC = (NC ; RC) is de�ned using the 
omponent asso
iationvalues, as: NC = fCi j Ci is a 
omponentgRC = fek j ek = (Ci; Cj) is a 
omponent asso
iation linkg (7)Copyright 
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14 K. SARTIPI AND K. KONTOGIANNIS

10

20

30

40

50

40

60

70

20 60 70 80 90 1401 10

Number of Links

Medium
22

127473422

Distribution range

24

64
Loose

Strong

200

944
Weak

(b) Quantization

Number of Links
between files

100

50

> 80

between files

(a) Distribution 

Association value

1

L4

(c) Strength of association 

L5

Strong

Medium
Loose

Weak

L1 L2 L3

L6

10030 120110Figure 6. (a) Distribution and (b) Quantization of the 
omponent asso
iation values in the Clipssystem. (
) Strength of asso
iation between �le L2 and other �les in a system of six �les.where, the 
omponent asso
iation link ek is annotated with the value of the
ompAsso
(Ci; Cj).7.1. Component asso
iation quantizationIn a 
omponent graph GC the values for 
omponent asso
iation are distributed over a broadrange that is not suitable for graph visualization. In order to allow a user/tool 
ooperativepartitioning pro
ess based on graph visualization, a quantization method is used to 
lassifythe values of 
omponent asso
iation into four ranges strong, medium, loose, and weak (denotedas strength of the asso
iation). Ea
h range 
an be 
olor-
oded to be viewed and interpreted ina graph visualization tool. These ranges are de�ned below:� Strong asso
iation: an indi
ation of signi�
ant intera
tion among the entities of two
omponents. Separate groups of 
omponents where ea
h group of 
omponent has internallinks with strong asso
iation, are proper 
andidates as the 
ores of distin
t subsystems ina system de
omposition. The fun
tionality of these 
ore 
omponents 
an be investigatedto assign meaningful names for the subsystems. A strong self asso
iation of a 
omponentCi, i.e., 
ompAsso
(Ci; Ci), indi
ates a high level of relationship among the entities ofCi.� Medium asso
iation: an indi
ation of high to medium intera
tion between two
omponents. This type of asso
iation is 
onsidered for 
olle
ting the 
omponents aroundthe 
ore of a subsystem.� Loose asso
iation: an indi
ation of low intera
tion between two 
omponents. This type ofasso
iation is used for grouping the yet ungrouped 
omponents, similar to the 
on
ept oforphan adoption [33℄. The loose asso
iation may also be used for �nding the 
ommonlyused 
omponents in a system.Copyright 
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A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 15� Weak asso
iation: an indi
ation of insigni�
ant or purely 
oin
idental intera
tion betweentwo 
omponents. This type of 
omponent intera
tion 
an be ignored for all pra
ti
alpurposes.The distribution of the asso
iation-link quantity versus asso
iation value is the basis fordetermining the range of ea
h asso
iation strength. A

ording to the experimentations with anumber of systems in di�erent domains (se
tion 9.1), this distribution de
reases very fast withthe in
rease of the asso
iation value (almost an inverse exponential distribution). Figure 6(a)illustrates su
h distribution for the Clips system with 44 �les.In order to produ
e a four-range asso
iation strength diagram that tra
es the envelop of su
han inverse exponential distribution, we de�ne a heuristi
 quantize(GC) that uses the following
onstraints on the relative numbers of links (link quantity) in the 
onse
utive ranges.� The quantities of the strong and medium asso
iations are almost equal, with higherquantity for the medium asso
iation.� The quantity of the loose asso
iations is approximately three times higher than thequantity of the medium asso
iation.� The rest of the asso
iation values 
onstitute the weak asso
iations.The heuristi
 quantize(GC) requires a system-dependent value for the quantity of anasso
iation range to start with. We set the quantity of the strong asso
iation links to a numberbetween 50% to 60% of the number of the system �les, whi
h tends to produ
e good results.This heuristi
 attempts to a

ommodate the distribution of the asso
iation values so thatthe 
losest numbers to the above approximated values are a
hieved, as illustrated in Figure6(b). The a�e
t of the quantization pro
ess is to map the 
omponent asso
iation values of theedges in the 
omponent graph GC , from a broad range of values onto a number between 1 and4. Figure 6(
) demonstrates a graphi
al representation of the quantization of the asso
iationvalues in part (a). In this example, a system of six �les is 
onsidered where the asso
iationlinks of �le L2 on other system �les is shown. File L2 has strong asso
iation on �les L5 and L1,medium asso
iation on �le L3, and low asso
iation on other �les. The strength of asso
iationbetween �le L2 and other �les have been 
olor-
oded to be viewed and distinguished in a graphvisualization tool.8. Partitional 
lustering te
hniqueIn this se
tion, an automated partitional 
lustering te
hnique for subsystem re
overy isdis
ussed. In the 
ontext of software reverse engineering the 
lustering algorithms 
an be
ategorized as: i) hierar
hi
al algorithms, where ea
h entity is �rst pla
ed in a separate 
lusterand then gradually the 
lusters are merged into larger and larger 
lusters until all entities are ina single 
luster; ii) optimization algorithms, where an initial partitioning of the whole system is
onsidered and with iterative entity movements between 
lusters the 
lusters are improved toan optimal partition; and iii) graph-theoreti
 algorithms, where an entity relationship graph ofCopyright 
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16 K. SARTIPI AND K. KONTOGIANNISthe system is 
onsidered and the algorithm sear
hes to �nd subgraphs with spe
ial propertiessu
h as maximal 
onne
ted subgraphs or minimal spanning trees [10℄.The general form of an iterative partitioning algorithm [34, 10℄ used in this paper is as follows:Algorithm: iterative partitioning (system �les) =�nd an initial partition of K 
lusters for the system �les.repeatdetermine the seed point of ea
h 
luster.move ea
h entity to the 
luster with the most similar seed point.until no entities were relo
ated in this iteration.A seed-point is an entity in a 
luster whose s
ore is an average s
ore of the entities in that
luster. Our approa
h to an iterative partitioning algorithm is summarized as follows:� Produ
e an initial partition of the system �les as a number of singleton 
lusters ea
h
ontaining one seed-point, and the rest-of-system (i.e., the remaining �les in the system)as a large 
luster. The seed-points are distinguished and dissimilar �les whi
h are highlyasso
iated by other �les.� Perform an optimization operation whi
h iteratively relo
ates the �les (ex
ept the seed-points) among di�erent 
lusters in order to improve the partition a

ording to the group-average-similarity value of the 
lusters.The details of the algorithms are dis
ussed below.8.1. Initial partitioningThe algorithm initial-partition (GC ; n) in Figure 7 generates an initial partition from theset of system �les NC using a s
oring method to �nd the seed-points. In order to �nd aseed-point all the �les are tested. The ideal 
ase is to �nd a group of seed-points whoseasso
iated �les are 
ompletely separated from ea
h other. The �rst seed-point is the �le withthe highest total asso
iation value of the links atta
hed to it. When a seed-point is sele
ted allits 
orresponding asso
iation links are marked as visited to keep other seed-points apart. Thes
ore of the subsequent seed-points de
rease if their 
onne
ted asso
iation links have alreadybeen visited. The pro
ess of �nding seed-points stops after �nding n seed-points. At this time,ea
h seed-point be
omes a singleton 
luster and all the rest of �les be
ome one 
luster 
alledrest-of-system. The utility fun
tion get-
ompAsso
-value(ek) returns the annotated 
ompAsso
of the link ek.8.2. Iterative partitioningThe algorithm iterative-partitioning(GC ; n; Æsim) in Figure 8 requires a list of 
lusters in Pto start with. Therefore, either it invokes the algorithm initial-partition and re
eives a list ofsingleton 
lusters and the rest-of-system in P , or re
eives an already 
omputed partition P 0whose 
lusters have been merged, split, or 
hanged. In ea
h iteration, the algorithm 
omputesthe average-similarity-value of every �le (ex
ept the seed-point �les) in the 
lusters to everyCopyright 
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A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 17Algorithm initial-partition (GC ; n) =input:GC : 
omponent graph 
onsisting of all system �les NC and asso
iation links RC .n: number of singleton 
lusters.output:P : initial partition of the system �les NC into n+ 1 disjoint 
lusters of �les.lo
al variables:L: remaining set of system �les to be used for partitioning.L
; Lx: a 
andidate �le to be tested as seed-point, and a �le in N
.E: set of all asso
iation links to/from a 
andidate �le L
.V : set of all already visited asso
iation links.Lsp: sele
ted seed-point �le.s
ore; s
oresp: s
ore of a 
andidate �le L
, and s
ore of the sele
ted seed-point sp.1 P := fg V := fg Lsp := nil L := NC2 repeat3 s
oresp := 0:04 for L
 2 L do5 s
ore := 0.06 E := fek j ek 2 RC ^ 9Lx 2 NC � ek = (L
; Lx) _ ek = (Lx; L
)g7 for ek 2 E do8 a := get-
ompAsso
-value(ek) % ek is annotated with a9 if ek =2 V then10 s
ore := s
ore + a11 else12 s
ore := s
ore + a2 % redu
e s
ore if ek is already visited1314 if s
ore > s
oresp then15 s
oresp := s
ore16 Lsp := L
1718 P := P [ ffLspgg % fLspg is a singleton 
luster19 L := L � fLspg20 V := V [ fek j ek 2 RC ^ 9Lx 2 NC � ek = (Lsp; Lx) _ ek = (Lx; Lsp)g21 n := n� 122 until n > 0 do2324 P := P [ fLg % L is now the rest-of-system 
luster25 return PFigure 7. Algorithm initial partitioning generates the �rst partition of 
lusters.Copyright 
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18 K. SARTIPI AND K. KONTOGIANNISAlgorithm iterative-partitioning ( GC ; n; Æsim) =input:GC : 
omponent graph 
onsisting of all system �les NC and asso
iation links RC .n: number of 
lusters ex
luding the rest-of-system.Æsim: min di�eren
e of the average-
loseness of a �le to self-
luster and another 
luster.This threshold allows to move a �le from the self-
luster to another 
luster.output:P : a list of disjoint 
lusters of �les, as a partition of the system �les NC .lo
al variables:L
: a 
andidate �le in the 
urrent 
luster to be tested for relo
ation.Csr
; C
ur : sour
e 
luster whose �les are tested against the 
urrent 
luster C
ur.sim; simsr
; simmax: group-average-similarity of a �le L
: to 
urrent 
luster C
ur;to sour
e 
luster Csr
; and to a 
luster that maximizes the similarity value.aF ileMoved: a 
ag whi
h is set if in an iteration a single �le is moved between 
lusters.global variables:P 0: already 
omputed partition P in whi
h one or more 
lusters merged/split/
hanged.1 P := initial-partition (GC ; n) _ P := P 02 repeat3 aF ileMoved := false4 for i = 1 to jP j do5 Csr
 := P [i℄6 for L
 2 (Csr
 � fseed-points of Csr
g) do % get 
andidate �le7 P [i℄ := Csr
 � fL
g8 simmax := 0:09 for j = 1 to jP j do10 C
ur := P [j℄11 sim := get-average-similarity-value (L
; C
ur; GC)12 if j = i then13 simsr
 := sim14 if sim > simmax then15 simmax := sim16 m := j % m stores the index of destination 
luster17 if simmax � simsr
 � Æsim then18 P [m℄ := P [m℄ [ fL
g19 aF ileMoved := true20 else21 P [i℄ := P [i℄ [ fL
g2223 until aF ileMoved24 return PFigure 8. Algorithm iterative partitioning relo
ates the �les among the 
lusters a

ording to Æsim.Copyright 
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A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 19
luster in the partition P to 
he
k if a move to a di�erent 
luster is needed or not, and performsa

ordingly. The test-and-move operation stops when no �le is moved between the 
lusters inan iteration and all �les remain in their own 
lusters, where the 
omputed partition is returned.The user may investigate the quality of the resulting partition a

ording to the 
riteriasu
h as modularity quality metri
 or pre
ision/re
all against the system do
umentation. Thefollowing operations 
an be performed if the partition is not satisfa
tory: i) merge two 
lustersthat are very 
lose; ii) split a large 
luster into two 
lusters with di�erent seed-points; iii) �xsome �les in parti
ular 
lusters, so that they will not be moved around. After ea
h of the aboveoperations, the algorithm must be run to rearrange the �les into 
lusters that is optimal withrespe
t to the similarity threshold Æsim. The fun
tion get-average-similarity-value 
omputesthe similarity value of a 
andidate �le to a 
luster of �les by averaging the 
ompAsso
 valueof the �le to every �le in the 
luster. This value represents the similarity of the 
andidate �leto the average �le in that 
luster and is equivalent to de�ning a new seed-point in the generalpartitioning algorithm dis
ussed earlier.8.3. Modularity quality evaluationWe use two modularity quality metri
s to assess the result of the proposed partitioningte
hnique in se
tion 8.2.The �rst metri
 is de�ned in equation (8) and measures the modularity quality in termsof intra-/inter-
onne
tivity among the entities in a 
olle
tion of 
lusters that form a systempartition as dis
ussed in [8℄. We refer to this metri
 as 
onne
tivity modularity-quality anddenote it as MQ
on: MQ
on = 1k kXi=1 eiN2i � 1k2�k2 kXi;j=1 ei;j2NiNj (8)wherek is the number of 
lusters;ei is the number of relations among the fun
tions, datatypes, and variables in a 
luster Ci;ei;j is the number of relations among the fun
tions, datatypes, and variables between two
lusters Ci, Cj ; andNi (Nj) is the number of simple entities in the 
luster Ci (Cj).In equation (8) the �rst term evaluates the average intra-
onne
tivity among entities in a
luster Ci and the se
ond term evaluates the average inter-
onne
tivity among entities in everytwo 
lusters Ci and Cj .The se
ond metri
 is de�ned in equation (9) and measures the asso
iation-based modularityquality of a system of �les or its partition into 
lusters and is dis
ussed in [35℄. This metri
measures the average of di�eren
e between \self-asso
iation" and \asso
iation on/by other
lusters" for a 
luster in the partition. The asso
iation-based modularity metri
 is denoted asMQasso
:Copyright 
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20 K. SARTIPI AND K. KONTOGIANNISMQasso
 = Pki=1 [
ompAsso
(Ci; Ci) � ( AiPni;jm=1 jCjm j + AijCij )℄k (9)su
h that Ai = ni;jXm=1 
ompAsso
(Ci; Cjm) � jCjm jwhere, k is the number of 
lusters; Ai is the group-average-similarity between the 
lusterCi and other linked 
lusters Cjm to Ci by merging all linked 
lusters Cjm into one big 
luster;and ni;j is the number of linked 
lusters Cjm to Ci. In equation (9), the �rst term in theparentheses 
omputes the average asso
iation value of Ci on its linked 
lusters, and the se
ondterm 
omputes the average asso
iation value of the linked 
lusters on Ci.9. Case studiesWe have implemented an intera
tive reverse engineering tool (Alborz [15℄) to re
over thear
hite
ture of a software system as 
ohesive 
omponents (i.e., subsystems or modules). TheAlborz tool has been built using the Re�ne re-engineering toolkit [36℄ and uses the Re�ne'sbuilt-in parsers to parse the software systems.The Alborz tool supports two 
lustering te
hniques, based on either a user-assistedpartitioning (dis
ussed in this paper) or a supervised 
lustering [2℄. The latter te
hniqueis hierar
hi
al, that is a system is �rst de
omposed into subsystems of �les and then ea
hsubsystem 
an be de
omposed into modules of fun
tions, datatypes, and variables.In both te
hniques, the tool provides metri
s to assess the modularity quality of thesoftware system and its de
omposition into subsystems or modules. The input to the toolis an information base of entities and relationships of the software system whi
h are extra
tedfrom either: i) AST of the software system generated by the Re�ne's built-in parser; or ii)RSF �le generated by the Rigi parser [14℄. The tool provides the result of the 
lustering using:i) HTML pages for the re
overed 
lusters, tool generated metri
s, and sour
e 
ode viewing;and ii) graphs of boxes and arrows to be visualized by the Rigi tool, where the boxes are the
lusters and the arrows are either \resour
e intera
tion" (i.e., import/export of simple entities)or \asso
iation links" between 
lusters.The experimentations in this se
tion are divided into three parts: �rst, the appli
ation ofthe Apriori algorithm on the system-graph G = (N;R) and the 
hara
teristi
s of the extra
tedasso
iated groups are dis
ussed; se
ond, the user/tool 
ollaborative system partitioningprovided by the Alborz tool is presented using two software systems; and �nally, the evaluationof the proposed partition te
hnique on the basis of two modularity quality measures aredis
ussed.The experimentations are performed on six middle-size industrial systems, namely: i) X�gdrawing editor, ii) Clips expert system builder, iii) Bash Unix shell; iv) Apa
he http server;v) Elm Unix mail system; and vi) Ghostview posts
ript/pdf �le viewer and navigator. Theexperimentations are run on a Sun ultra 10 with 440MHZ CPU, 256M memory, and 512Mswap disk spa
e.Copyright 
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Figure 9. (a) The relation-to-node ratio: 1) in the studied software systems before data mining; 2) inthe generated frequent 1-itemsets and higher; and 3) in the frequent 2-itemsets and higher. The ratioin
reases in ea
h subsequent frequent itemsets. (b) The number of generated asso
iated groups versusthe number of nodes in the studied software systems. Systems with higher relation-to-node ratio inpart (a) generate more asso
iated groups with a given number of nodes.9.1. Maximal asso
iation extra
tionIn this group of experimentations the o�-line analysis presented in se
tion 3 is dis
ussed. Thegroups of entities with maximal asso
iation 
onstitute the 
ru
ial data for the partitioningpro
ess. These data are generated and stored on
e and are used several times.In the o�-line analysis, the main e�ort is fo
used on generating asso
iated groups that in
ludeall the relations use-F, use-T, use-V having the lowest possible minimum-support value, i.e., 2.Unfortunately, the number of intermediate asso
iated groups are very sensitive to the 
hosenminimum-support value and for small values the number of groups in
reases very rapidly hen
ethey require a large swap disk and exe
ution time.Figure 9(a) illustrates the ratio between the number of relations of types use-F, use-T, use-Vto the number of nodes of types fun
tion, datatype, variable in ea
h software system. This ratiois an indi
ation of the overall data/
ontrol 
ow 
omplexity of a system. In the group of barslabeled \system relations" the highest ratio belongs to Elm system with the #relations#nodes = 4 andthe lowest belongs to Ghostview with ratio 2. The appli
ation of Apriori algorithm generatesthe asso
iated groups of entities from frequent 1-itemsets to frequent k-itemsets where k is themaximum size of the extra
ted itemsets. As it is seen in Figure 9(a):ratio for frequent 2-itemsets > ratio for frequent 1-itemsets > ratio for original system.However, the number of asso
iated groups de
rease for a higher itemset size. Sin
e theCopyright 
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22 K. SARTIPI AND K. KONTOGIANNISasso
iated groups in frequent 1-itemsets have only one shared entity in 
ommon, it makessense to 
onsider frequent 1-itemsets as noise and delete them, hen
e 
onsider the asso
iatedgroups in frequent 2-itemsets and up (i.e., two, three, ... entities in 
ommon). This 
auses to
ompute 
omponent asso
iation between system �les based on only large asso
iated groups ofentities, hen
e produ
ing better partitioning results.Figure 9(b) illustrates a 
omparison of the studied systems in terms of the generated groupswith maximal asso
iation versus number of entities in the systems, all having the relationsuse-F, use-T, use-V and minimum-support 3.The following observations 
an be made from the 
urve of ea
h system in Figure 9(b): i)the rate of generating asso
iated groups is in
reasing with respe
t to the size of the entities,where this in
rease is 
aused by forming new asso
iated groups whose entities are partly inthe newly added entities and partly in the previous entities; ii) systems with higher relation-to-node ratio in Figure 9(a) generate more asso
iated groups with a given number of nodes;and iii) the number of the generated groups are kept within a tra
table size by this in
rease.Time and spa
e statisti
sIn Figure 10, the statisti
s pertinent to the 
omputation time and disk spa
e requirements forthe generated asso
iated groups for six systems are presented.The minimum-support number is a 
ontrol me
hanism to redu
e the 
omputation time ofthe Apriori algorithm in generating the frequent itemsets. For the X�g system, even thoughthe minimum-support threshold is in
reased to 7 still the maximum size of the generateditemsets is 16 that means large asso
iated groups have been extra
ted. The 
ombination ofthe maximum-itemset size and the number of extra
ted asso
iated group, (i.e., 3167 for X�g),is a 
riterion for the user to assess the quality of the generated asso
iated groups. Ideally, wewould like to generate the frequent itemsets with minimum-support 2 to take into a

ount allthe asso
iated groups. However, for a system with a large number of highly related asso
iatedgroups, this may 
ause the number of intermediate frequent itemset to explode. In su
h 
ases,still it is possible to obtain enough relations among the system entities by multiple exe
ution ofthe Apriori algorithm with di�erent minimum-support values, as in 
ase of the Bash system inFigure 10. For the Bash system, the minimum-support 3 produ
es 1225 asso
iated groups withmaximum itemset size 11. However to in
rease the number of asso
iated groups of entities,the algorithm is exe
uted again with minimum-support 2, but the exe
ution is stopped aftergenerating frequent 4-itemsets, that is before the number of asso
iated groups explodes. In this
ase, the resulting asso
iated groups produ
e entity asso
iation measure among those entitiesthat did not exist in the previous run of the algorithm with minimum-support 3. Sin
e westopped the exe
ution, the re
overed asso
iation values are probably lower than the a
tuallyvalues. In the 
ase of Clips system, the minimum-support is 3 whi
h produ
es 810 frequentitemsets with di�erent itemset sizes and max-itemset size of 16. This 
ombination is promisingfor a satisfa
tory analysis.9.2. User/tool 
ollaborative system partitioningIn this se
tion the on-line analysis in se
tion 3 is dis
ussed using the X�g system as a 
asestudy. X�g is an intera
tive drawing editor whi
h runs under the X Windows System andCopyright 
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Figure 10. The time and spa
e statisti
s for generating groups of entities with maximal asso
iation.The presented data in
lude: 1) size of the systems in Kilo Lines Of Code (KLOC); 2&3) number ofnodes (fun
tions, datatypes, variables) and relations in the system; 4) number of minimum-supportand maximum size of itemsets in the generated asso
iated groups; 5) number of generated frequentitemsets (asso
iated groups) and the required disk spa
e to store them; 6) generation time in hoursand minutes; and 7) numbers of 
omponent graph nodes (�les) and edges for (Strong, Medium, Loose,Weak) asso
iation strength ranges.
onsists of 74 KLOC, 98 sour
e �les, 75 in
lude �les, 1662 fun
tions, 1356 global variables,and 37 aggregate types.Figure 11 illustrates the partitioning of the quantized 
omponent graph GC using the graphvisualization tool Rigi [14℄. In these graphs a box is either a system �le or a subsystem of �les(Figure 11(
)) and a line is a quantized asso
iation link to represent the asso
iation strengthsamong the �les or subsystems. A line from the bottom of a box Li to the top of another boxLj represents 
ompAsso
(Li; Lj). A box Li with a 
rossing line from bottom to top represents
ompAsso
(Li; Li).Figure 11(a) illustrates the initial partition P of the X�g system by applying the initialpartition algorithm (dis
ussed in se
tion 8.1) on the system �les NC . The edges between theX�g �les 
onsist of strong and medium asso
iation links. The initial partition in
ludes sixsingleton 
lusters, ea
h 
ontaining a seed-point, and the rest-of-system as a large 
luster. Theorder of the sele
ted seed-points are from S1 to S6. Ea
h seed-point has many links to the�les in the rest-of-system whi
h quali�es it to be a seed-point. However, in this 
ase studythe number of links between the seed-points is high, indi
ating high intera
tion among theresulting subsystems.The appli
ation of the iterative partitioning algorithm on the initial partition P , dis
ussedin se
tion 8.2, is shown in Figure 11(b). In this partition, the singleton 
lusters have beenpopulated by moving the similar �les from rest-of-system into them. Also, two pairs of 
lustershave been merged into two 
luster S1-S4 and S3-S5. The reason is that both S1 and S4 
olle
tthe �les from utility and �le manipulation subsystems of X�g (dis
ussed later), that suggestto merge them into one 
luster. The similar reason holds for merging S3 and S5. As a result,Copyright 
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Figure 11. System partitioning of the X�g system using the quantized 
omponent graph GC .Copyright 
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(a)

Strong
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Loose

Figure 12. The analysis of the 
lustered subsystems of X�g system. (a) Resulting system partitioningof X�g. (b) Subsystem asso
iation analysis and its link from the main page.the X�g �les have been 
lustered into four subsystems and the rest-of-system 
luster based onthe asso
iation strengths between �les.Figure 11(
) demonstrates the 
omponent graph for the partitioned system with strong,medium, and loose asso
iation links between the resulting subsystems. This graph is a simplerepresentation of the group of asso
iation links in Figure 11(b), where, the subsystems S1-S4and S3-S5 have strong asso
iation with subsystem S6, and the subsystem S2 and rest-of-systemare isolated. Figure 11(d) illustrates adding loose asso
iation links to Figure 11(b), where stillthe weak asso
iation links are not added. It is easily seen how �ltering the low asso
iationstrength links from the 
omponent graph 
an assist the user to investigate the system underanalysis by viewing the lo
us of high intera
tion among the system �les.HTML pagesThe result of partitioning algorithm on the system �les is presented by the HTML pagepartition analysis in Figure 12(a). The top part of this page provides overall informationabout the software system with links to di�erent pages of information, statisti
s about the dataCopyright 
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Figure 13. The evaluation of the X�g system partitioning using the Pre
ision and Re
all metri
s.mining results, statisti
s about the partitioning algorithm exe
ution, and evaluation metri
sas was dis
ussed in se
tion 8.3. The bottom part of the page 
orresponds to the �ve 
lusteredsubsystems S1-S4, S2, S3-S5, S6, and rest-of-system. For ea
h subsystem, the imports/exportsparts represent the intera
tions of the subsystems through simple entities in the form of groupof resour
es (or individual resour
es with links to sour
e 
ode). For example, subsystem S1-S4imports 21 fun
tions from S2. Ea
h �le of subsystem S1-S4 is shown in a separate line withthe 
loseness value to other �les in that subsystem, e.g., 0.247 for �le u elasti
.
 in line 1.The asso
iation statisti
s and overall a
hieved modularity measure of the 
lusteredsubsystems are provided via the HTML page 
lustered subsystems in Figure 12(b). In this page,the asso
iation value of ea
h subsystem on itself (self-asso
iation) and the total asso
iationvalue of ea
h subsystem on other subsystems that are linked to it (mutual asso
iation(n)) areshown, where n is the number of linked subsystems and mutual asso
iation means that theasso
iation value is the same in both dire
tions. For example, line 1 that is shown below isinterpreted as: subsystem S1-S4 with 412 fun
tions has medium SelfAsso
 value, and has highMutualAsso
 value on other subsystems. SelfAsso
 MutualAsso
(n)1. S1-S4 (f:412) 0.503 0.846(4)X�g partitioning evaluationA

ording to personal 
ommuni
ation with the maintainer of the X�g system [37℄, X�g la
ksany do
umentation on the stru
ture or implementation, and only the user manual exist.However, a 
onsistent naming 
onvention is used throughout the system �les whi
h 
an bereferred as the stru
ture of the system. The system naming 
onventions are as follows: d � �lesrelate to drawing shapes; e � �les relate to editing shapes; f � �les have �le-related pro
edures;u � �les are utilities for 
reating or editing shapes ; and w � �les have X11 window 
alls inthem to do all of the window-related fun
tions.Figure 13 presents the evaluation of the X�g system partitioning using the informationretrieval metri
s Pre
ision and Re
all. The result of partitioning 
onforms with the above taskCopyright 
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Figure 14. System partitioning and evaluation of the Clips system. (a) Component graph with allasso
iation links. (b) System partition into six 
lusters. (
) Partitioning evaluation using Pre
isionand Re
all metri
s.des
ription of the X�g �les. The result shows that two subsystems editing shapes and utilityfun
tions are partly 
lustered into two di�erent subsystems ea
h shown with the 
orrespondingRe
all value. The reason is that the fun
tionality of the drawing shape �les and editingshape �les are 
losely related (subsystem S6) and the utility �les provide servi
es for drawingand editing �les (subsystem S3-S5). The obtained Pre
ision and Re
all values indi
ate thatpartitioning pro
ess has re
overed the X�g subsystems with high a

ura
y.9.3. System partitioning of the Clips systemThe Clips system provides an environment for 
onstru
tion of the rule based expert systemsand is supported by an ar
hite
tural manual [38℄ whi
h is our referen
e in this experimentation.Clips 
onsists of 40 KLOC, 44 sour
e �les, 736 fun
tions, 161 global variables, and 54 aggregatetypes.The appli
ation of the iterative partitioning algorithm on the Clips system is shown inFigures 14(a) and (b). The 
orresponden
es of the partitioning result with the do
umentationCopyright 
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Figure 15. The modularity-quality measure of �ve partitioned systems based on (a) inter-/intra-
onne
tivity among the 
lusters, and (b) asso
iation among the 
lusters. (
) The 
onne
tivity-basedmodularity measure versus the number of �le movements among the 
lusters.of the Clips system in terms of Pre
ision and Re
all metri
s are presented in Figure 14(
),whi
h is 
onsidered as a very promising result.9.4. Modularity quality evaluationFigures 15(a) and (b) illustrate the performan
e of the proposed partitioning algorithm inin
reasing the modularity quality of �ve partitioned systems based on two modularity qualitymetri
s de�ned in se
tion 8.3. Ea
h system is partitioned into four 
lusters and the modularityvalues are measured versus the similarity threshold Æsim, where Æsim is the similarity-di�eren
eof a �le to two 
lusters that determines whether a �le moves between two 
lusters or not.Three regions are 
onsidered in Figure 15(a) as follows: I) For large values of Æsim (i.e., 0.8to 0.3) only a few �les with high 
loseness values to the 
lusters are moved from the rest-of-system, and the majority of the �les remain in the rest-of-system. When highly 
lose �lesexist in ea
h 
luster the amount of intra-
luster intera
tion is high 
ompared to inter-
lusterintera
tion, hen
e, the value of MQ
on is high for large values of Æsim. II) For medium valuesCopyright 
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A USER-ASSISTED APPROACH TO COMPONENT CLUSTERING 29of Æsim (i.e, 0.3 to 0.05) the inter-
luster intera
tion in
reases sin
e more �les are moved to
lusters, however the quality of the 
lusters may not be suÆ
iently improved. This 
aused adrop in the value of MQ
on. III) For small values of Æsim (i.e, 0.05 to 0.001) the quality of the
lusters improve to a

ommodate groups of highly 
lose �les into the 
lusters, hen
e the valueof MQ
on in
reases again.Figure 15(b) illustrates the same experimentation dis
ussed above with respe
t to theasso
iation-based modularity metri
 MQasso
. The value of MQasso
 monoti
ally in
reasesfrom the initial-partition of the system (range I) to its �nal state (range III). This indi
ates thatMQasso
 
onsiders both size and quality of the 
lusters, hen
e, evaluates a \low" modularityvalue for the initial partitioning of the system, as opposed to MQ
on.Figure 15(
) presents the improvement of the modularity valueMQ
on during the exe
utionof the iterative partitioning algorithm. The modularity of the partitioning 
hanges similar tothe experimentation in Figure 15(a) dis
ussed above.Therefore, a

ording to both modularity metri
s MQ
on and MQasso
 the proposedpartitioning te
hnique enhan
es the modularity value of the partitioned system.9.5. Dis
ussionThe quality of the resulting partition and the exe
ution time of the iterative partitioningte
hnique dis
ussed in this paper is 
ontrolled by the similarity-threshold parameter Æsim.As tested, in most 
ases the algorithm �nds an optimal result (i.e., Æsim = 0) with a giveninitial partition after a small number of iterations. However, the tool allows the user to stop thealgorithm and 
he
k the partition if some �les are relo
ated repeatedly among the 
lusters. Forthis paper, we examined the proposed algorithm with several middle-size systems (-100 KLOC),however the empiri
al results show that the algorithm will also terminate in a reasonable timefor larger systems, sin
e in most 
ases after a few iterations the algorithm produ
es result.As dis
ussed in se
tion 9.1 for data mining statisti
s, produ
ing asso
iated groups with thelowest possible minimum-support value 2 is not always feasible for the large systems. Thisa�e
ts the quality of the partitioning be
ause in
reasing the minimum-support deletes someasso
iation relations among the system entities. However, the tool provides means for mergingthe results of data-mining with di�erent minimum-support values, or merging the results ofdata mining for di�erent relations use-F, use-T, and use-V. These te
hniques re
over all theasso
iation relations that had been missing in the �rst exe
ution of data mining, but theobtained asso
iation values for the missing relations may be less than the real values thata
tually exist. The main input for the proposed approa
h is an entity-relation database of thesoftware system a

ording to the abstra
t domain model dis
ussed in se
tion 4. Therefore,the approa
h is not programming language dependent. For the experimentation purposes,
urrently we use Re�ne's built-in C parser to parse systems written in C, however, the tool
an analyze the systems whose entities and relationships are presented as RSF format. Theapproa
h 
an also be extended to analyze obje
t-oriented systems by de�ning a similar entityrelation domain model for obje
t-oriented systems.Copyright 
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30 K. SARTIPI AND K. KONTOGIANNIS10. Con
lusionSoftware systems evolve over time and their original design is 
onstantly modi�ed to re
e
tthe result of a series of 
orre
tive, perfe
tive, or enhan
ing maintenan
e a
tivities. In thispaper, we argue that re
overing the design of su
h heavily modi�ed systems requires a user-assisted iterative and in
remental reverse engineering pro
ess that 
an augment the automatedre
overy te
hniques. Spe
i�
ally, we presented a user-assisted ar
hite
tural design extra
tionmethodology whi
h we believe it is suitable for the re
overy of 
ohesive subsystems based onan iterative partitioning 
lustering in order to obtain higher quality design for the system. Insu
h a design re
overy environment, the tool supplies pre-pro
essed system information, usingdata mining and asso
iation metri
s, to enable the user to obtain insight into the design of thesystem. Entity and 
omponent asso
iation metri
s measure the maximal asso
iation amongthe system entities or 
omponents as the means to 
luster the 
omponents into subsystems.Finally, a quantization heuristi
 
onverts the broad range of the asso
iation values among the
omponents into four ranges, whi
h fa
ilitate the system graph visualization and 
lusteringpro
ess. Experimentation with six middle size systems provided an evaluation of the proposedapproa
h with respe
t to the a

ura
y of the proposed approa
h.The next steps for this resear
h in
lude the investigation of 
onstraint-based and pattern-based 
lustering where the user imposes 
ertain 
onstrained 
riteria in the form of a queryor a pattern that the 
lustering result should 
omply with. Moreover, we would like toinvestigate requirement-driven 
lustering te
hniques where the 
lustering pro
ess is �ne-tunedfor obtaining a system partition that 
omplies with spe
i�
 non-fun
tional requirements (e.g.,modularity, adaptability).REFERENCES1. Wallmuller E. Software quality assuran
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