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Abstract—The advancements in smart home technologies have
created new opportunities for precise monitoring of the older
adults’ daily activities to provide timely care, predict health
problems, and promote independent living at home. Many recent
studies have investigated abnormality detection in Activities of
Daily Living (ADL), and some used deep learning methods to
handle the problem. In this paper, we leverage Bi-Directional
Encoder Representations from Transformers (BERT), as a state-
of-the-art method in machine learning, to analyze older adults’
ADL sequences. Due to the fine-tuning capability of transformers,
they are a good fit for supervised tasks when a large labeled
training dataset is not available. Their architecture also allows
for Parallel Computation, which is important for (near) real-
time abnormality detection. To the best of our knowledge, this
is the first effort to represent the older adult’s daily behavior
as sequences of ADLs with the goal of applying transformers
to the behavior change detection problem. We designed four
experiments to illustrate the capability of Transformers in de-
tecting individuals’ behavior abnormalities. We conducted a case
study on a two-resident ADL dataset to evaluate the model in
four experiments. Our results show that a BERT-based classifier
can effectively detect behavior abnormalities from sequences of
ADLs. Also, transfer learning proved to be helpful when it comes
to fine-tuning a pre-trained model for a new resident.

Keywords: ADL, Smart Home, Sensor Network, Trans-
former, BERT, Sequence Classification, Anomaly Detection,
Change Detection.

I. INTRODUCTION

The advances in sensor technology has facilitated the en-
hancement of smart home applications [1]. Smart homes allow
for monitoring of older adults’ activities in order to make
them as independent as possible in their everyday lives and,
ultimately, to reduce unnecessary hospitalization or readmis-
sions [2]. For the detection of ADLs, accurate sensor data
is required. Obtrusive and inconspicuous sensors are the two
types of sensors that can be distinguished. Wearable sensors,
sometimes known as obtrusive sensors, track precise location
and can be used for health monitoring. Farivar et al. [3]
looked into the use of wearable sensing devices among older
adults. The difficulty of dealing with these technologies is a
disincentive to older adults’ adoption decisions, according to
the results of their online survey and interviews. The findings
also revealed that an older adult’s subjective well-being, which
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is a self-reported measure of well-being, adversely moderates
the effect of cognitive age on their use intention, indicating that
when an older adult’s subjective well-being is poor, cognitive
age increases their intention to use the gadget [3]. These
findings highlight the importance of employing sensors to
monitor the everyday activities of older people who require
ongoing care.

Unobtrusive sensors, on the other hand, can identify an
individual’s interaction with household objects as well as with
other subjects and measure the changes in the environment.
Unobtrusive sensors are less restrictive and do not need any
client-side coordination because data can be collected without
the resident’s involvement once they are deployed (no need
to be worn). Video-based activity monitoring methods have
been adopted by some researchers [4] with the justification
that they are less obtrusive and do not interfere with daily
activities. However, these methods are likely to pose security
issues. Also, it is time-consuming to analyze videos making
this technology unsuitable for systems that require real-time
analysis. Overall, in order to have the most accurate picture of
older persons’ activities, an integrated sensor network platform
using both wearable and non-wearable sensors is required.

There are currently a number of smart home projects that
have been developed worldwide [5]–[10]. Data collected from
such testbeds has been used in two types of sensory data
analysis, lower sensory level and higher activity level. The
lower-level analysis is the classification of activities based
on sensory readings, while the derived activity labels are
processed for further decision-making support in higher-level
behavior analysis. Supervised or unsupervised learning is used
to learn or discover activity annotations in lower-level analysis,
depending on the availability of labeled data. When activity
labels are established, these activity labels are reused for
further study of anomaly detection or for prompting system
reminders in higher level analysis [11].

Detecting change in older adult behavior will give health-
care providers the ability to constantly monitor their health
condition and provide medical instructions or prescriptions for
the patient. It can also be used to supplement practitioners’
knowledge of palliative care by detecting symptom escalation
and functional deterioration in real time and aiding proactive
therapy. In principle, sensor technologies can substitute for



some caregiving time, which is normally used to monitor
the older adult. The decreased time is expected to minimize
caregiver stress and improve quality of life for both family
caregivers and older adults. In addition, because activities of
daily living (ADL) are good indicators of health status, activity
monitoring could be used over the long term to detect gradual
deterioration in the health status of older adults, which could
threaten their ability to live independently.

In this paper, we leverage Transformers in analyzing older
adults’ ADL sequences. Transformers generate superior results
in Natural Language Processing, where they are originally
presented and applied [12]. Transformers are used for su-
pervised classification tasks such as sentiment analysis as
well as sequence to sequence processing such as in language
translation. They are also leveraged in other domains such as
system log analysis [13]–[15] and IoT [16]. The followings
are the properties of the Transformers that lead us to assume
they are a good fit for older adult ADL analysis:
Pre-training: Transformers can be pre-trained on large
datasets, then fine-tuned for a given task on another (perhaps
smaller) dataset. Thus, Transformers are a good fit for super-
vised tasks when we don’t have access to a large, labelled
training dataset.
Parallel Computation: this functionality allows us to use
transformers in (near) real-time abnormality detection. While
RNN models operate sequentially, Transformers process the
entire input at once allowing for parallel processing.
Positional Embedding: when it comes to encoding the tokens
in a sequence, this technique plays a critical role in enabling
Transformers to embed context in the encoding process.
Bi-Directional Training: this feature allows for the learning
of the interrelationships of tokens in a sequence based on both
pre- and post-tokens, resulting in a more accurate model.

The main contributions of this research are as follows: (1)
We have introduced a new application for Transformers. To
the best of our knowledge, this is the first effort to represent
daily behavior as sequences of ADLs to apply transformers to
the behavior change detection problem. (2) We design four
experiments to illustrate the capability of Transformers in
detecting behavior abnormalities. (3) We conduct a case study
on a two-resident ADL dataset to evaluate the models in the
four experiments.

The rest of this paper is laid out as follows. We look at
the related work in Section II. We provide some background
information about state-of-the-art machine learning methods
for sequence classification in Section III. In Section IV, we
discuss how to apply BERT transformers to the problem
of behavior change detection in older adults. A case study,
Section V, on a two-resident ADL dataset is conducted to
showcase the capability of the model in predicting behavior
abnormalities. Finally, Sections VI and VII include discussion
and concluding thoughts, as well as an introduction to the
potential future studies.

II. RELATED WORK

Scholars have extensively used machine learning methods
to analyze ADLs with the goal of providing on-time care and
predicting older adults’ health conditions. Many studies have
benefited from the availability of datasets on daily activities,
including the use of machine learning methods for predict-
ing/detecting anomalous behaviour [17]–[20], the development
of reminder and recommender systems in healthcare support,
and the supervision of long-term behaviour [21]–[23].

Arifoglu and Langenspepen [12] present an algorithm for
learning health changes based on the correlation of context-
enriched frequent behaviour patterns and cognitive and phys-
ical health deterioration. Although the sequence of activities
is taken into account in their work, it is only for short-term
behaviour patterns. Moallem et al. [6] presented an anomaly
detection method in smart homes based on deep learning. They
use binary sensor data to train a predictor model, a recurrent
neural network, to predict which sensors will turn on/off and
how long the event will last.

Karakostas et al [24] present an anomaly detection approach
in which the predicted user activity is represented by a task
model. The predicted and actual behaviour are then compared
to see if any variance (anomaly) has occurred. The problem
with such model-based anomaly detection approaches is that
they fail to detect anomalies that have not previously occurred.

Fahad et al [8] propose a method for detecting behaviour
anomalies by taking into account two types of abnormality:
missing or extra sub-events in an activity and unusual duration
of the activity. They trained an H2O model to classify events
using labelled activities (normal, anomaly). The main problem
with such supervised models is that they must be trained
using labelled data, which is time-consuming and difficult to
generate.

In [25], a Long-Short Term Memory(LSTM)-based method
for detecting anomalies in daily activity sequences is proposed,
as well as a comparison of the proposed method with the Hid-
den Markov Model, which demonstrates comparable results
for the LSTM model.

By simplifying the activity prediction problem to a regres-
sion learning problem, Ismail et al [26] present a novel so-
lution. They then provide evaluation metrics for the proposed
activity predictor. Finally, they demonstrate the applicability
of their method by embedding the activity predictor in an
activity prompter service, demonstrating the reliability of their
approach.

Hochreiter and Schmidhuber [27] propose a context-aware
framework for learning and predicting human behavior. Behav-
ior contexts such as weekday and time of day are collected
from residents’ real-life data to improve the accuracy of
activity prediction.

Although behavior abnormality detection has been the focus
of many studies by analyzing sensor data, there is a gap
in training models that are able to transfer learning from a
model, which is trained on a resident’s data, to predicting
abnormalities in other residents. In this study, we try to close
this gap.



III. BACKGROUND

in this section we provide an overview of state-of-the-art
machine learning methods in sequence classification.

A. Recurrent Neural Networks (RNN)

Recurrent Neural Networks including LSTMs and Gated
Recurrent Units (GRUs) process sentences word by word.
The concept of hidden state is introduced for retaining past
information. When processing a word in a sentence, the hidden
state of the previous word is required to encode the current
word. That is why RNN models cannot be trained in parallel.
Also, the forget gate in LSTM architecture is designed to
allow for filtering out information that is unrelated in order
to incorporate a long-term memory into the model.

To further mitigate the problem of capturing long-term
dependencies, some scholars have used Bi-Directional LSTM
models, which encode the same sentence from two directions,
i.e., from start to end and from end to start. Still, there are is-
sues with these LSTM models that limits their performance in
analyzing sequences. LSTMs do not perform well dealing with
long sequences in terms of capturing long-term dependencies.
The reason is that the probability of keeping the context from
a word that is far away from the current word which is being
processed decreases exponentially with the distance from it.

B. Transformers

To resolve some of the above problems, researchers have
created a technique for paying attention to specific words
[12]. Transformers have eliminated the need for recursion by
introducing the characteristics described below:
Non-sequential Training: sentences are processed as a whole
rather than word by word.
Self-Attention: this is the newly introduced ’unit’ used to
compute similarity score of each word in a sentence with a
current word, and hence it models the dependencies between
the tokens of the sequence. Simply put, each word in the
sequence pays attention to other words in the same sequence,
and therefore, captures the relationships between them.
Positional Embedding: this is another innovation introduced
to replace recurrence in RNN techniques. The idea is to
use learned weights which encode information related to the
position of a token in a long sentence.

As opposed to RNN models, Transformers do not rely
on past hidden states to capture dependencies with previous
words. Instead, they process a sentence as a whole, which
does not need the hidden state and forget gate mechanism.
Therefore, there is no risk of losing (or ’forgetting’) past
information [28]. In other words, at each step the algorithm
has direct access to all the other steps (self-attention), which
leaves practically no room for information loss. On top of that,
we can look at both future and past elements at the same time,
which also brings the benefit of Bi-Directional RNNs, without
need for double computation. And of course, all this happens
in parallel (non-recurrent), which makes training much faster.
Moreover, the Transformers use multi-head attention which
is a technique to provide the opportunity to capture the

relationship among different words from different (or multiple)
aspects. Finally, positional embedding enables the model to
differentiate between the same word appearing in different
positions (or contexts).

It should also be noted that Transformers can only capture
dependencies within pre-defined and fixed-size input words for
training. That is, if a maximum sentence size is set to 50, the
model will not be able to capture dependencies between the
first word of a sentence and those that occur beyond the 50
words, which may be in the next paragraph.

C. BERT

Bidirectional Encoder Representations for Transformers
(BERT) are standard building blocks for training task-specific
Natural Language Processing (NLP) models [29]. BERT mod-
els, which are pre-trained on web-domain huge text corpus, are
the focus of many task-specific NLP problems [30]–[32]. Pre-
trained BERT models have been proven to be effective when
they are fine-tuned for specific tasks using domain-specific
training data [33].
In a BERT model, the input consists of text spans, such as
sentences separated by special tokens [SEP]. Using Byte-Pair
Encoding (BPE) [34] a small set of sub-words that can com-
pactly form all words in the given corpus are first identified
using a greedy algorithm. The text corpus and vocabulary may
preserve the character’s case (cased) or convert all characters
to lowercase (uncased). The input token sequence is first pro-
cessed by a lexical encoder, which combines a token embed-
ding, a (token) position embedding and a segment embedding
(i.e., which text span the token belongs to) by element-wise
summation. This embedding layer is then passed to multiple
layers of Transformer modules [12]. In each Transformer layer
(self-attention head), contextual representations of tokens are
generated. This is done by calculating a non-linear transforma-
tion of tokens’ representations via multiplying the embedded
input by three matrices, Query, Key, and Value. The matrices
get trained through the learning mechanism of the model. The
final layer outputs contextual representations for all tokens,
which combines information from the entire text span.

A Masked Language Model (MLM) task and/or a Next
Sentence Prediction (NSP) task are used for BERT pre-
training. The MLM randomly replaces a subset of tokens by a
special token, [MASK], and asks the language model to predict
them. The training objective is to minimize the cross-entropy
loss between the original tokens and the predicted ones. NSP
is used for pre-training the model by training it to predict the
sentence that follows each sentence in the training corpus.

IV. APPROACH

In this section, we introduce our approach for behavior
change detection using BERT encoders. First, we explain how
we model an individual’s daily behavior based on sensor data
in a way that BERT layers can generate the output. Then,
we elaborate on the BERT model suggested for predicting
potential abnormalities in older adult behavior.



A. Behavior Representation

Older adult indoor behavior needs to be modeled for rela-
tively unconstrained environments. We assume that activities
are carried out in a certain order in our model. As a result, for
the sake of simplicity, we ignore concurrent activities. When a
behaviour is viewed as a series of discrete tokens/events (for
example, sleeping, eating, watching TV, and cooking), two
essential quantities emerge: i) acts: the acts that make up a
behaviour; and ii) Order: the order in which the activities are
performed.

In our study, we use the concept of tokenizing behaviour
in the same manner that Natural Language Processing (NLP)
experts have looked at documents as vectors of their con-
stituent words through VSM (Vector Space Model). VSM
[35] is a technique that efficiently captures the content of
a sequence, but its methods disregard word order entirely.
However, natural activity-orderings, not only activity content,
characterise behaviour. As a result, a model is needed that
explicitly captures activity order. In our representation model,
we split the data into days. After that, each day is depicted as
a series of events. Each sequence appears to have a different
length than the others. Because the daily sequences are fed into
the BERT model in the following stage and the BERT model
only accepts input sequences of the same length, a maximum
sequence length must be set and padding tokens are added to
the end of each sequence to ensure that they are all the same
length. In this study, we use an ordered sequence of events to
model the human behaviour B:

B = e1, e2, ..., ei, ..., eW (1)

where ei denotes an event. To define events, we borrow from
the NLP corpus vocabulary concept. We consider two ADL
features to distinguish events: type ti and duration di:

ei = Concatenate(ti, di);

where ti ∈ {activity types} and
di ∈ {Short,Medium,Long}

(2)

Because the model works with categorical data, we discretize
the values for activity duration. We believe that, while it
does not affect the model’s correctness, it simplifies it by
reducing the state space. First, we normalise the duration of
each activity type separately (using only the training data) as
the range of time in different activity types differs, as shown
in Fig. 1. The duration values are then converted to category
values using an equal width discretization approach.

B. BERT for Behavior Change Detection

The BERT model can now accept ADL sequences as input
because daily behaviour is now shaped as ADL sequences,
comparable to text corpus.

As illustrated in Figure 1, the ADL sequences are fed into
the BERT model, which first tokenizes them into constituent
tokens. Tokenized input is then transformed into tensors of
numbers. In order for the tensors to represent tokens’ context

as well as tokens’ content, the embedding process is different
from conventional embedding methods such as Word2Vec
[36]. BERT embedding uses positional embedding to incor-
porate the context of a token into the vector. As a result, a
brief nap in the middle of the day is coded differently than a
short nap at night, because the position of the token is taken
into account when embedding. While the token in both cases
is ”Sleep”, they will be embedded differently.

The embedded sequences pass through the encoding layer
with attention heads to encode the entire sequence in the
next layer. When processing each token, the self-attention
head looks for interrelationships between the token and other
tokens. For each word, the Query, Key, and Value vectors
are calculated by multiplying the embedded vector by three
matrices that we trained during the training process. Then, all
of the other tokens in the input sequence will be scored against
this token to represent the degree of association between the
token and other tokens in the sequence.

We use the BERT-Base-uncased architecture for our imple-
mentations, which has 12 attention heads. Finally, a standard
classifier, such as a logistic regression classifier, receives the
encoded sequence and produces the sequence label, which
specifies whether the ADL sequence is a potential anomaly
or not.

Transfer Learning is a key advantage of using BERT
models in sequence analysis. The idea is that BERT models
can be pre-trained on a dataset consisting of general-domain
corpus of text. The pre-trained BERT can then be fine-
tuned on a certain domain-specific data for a specific task.
Existing research suggests that transfer learning is effective
in BERT models [29]. However, a recent study questions the
effectiveness of transfer learning when it comes to using pre-
trained BERT models for domains with a high percentage of
exclusive vocabulary such as the biomedical domain [33].

Transfer learning, on the other hand, can be useful for
training the BERT model using datasets obtained from mul-
tiple residents’ ADLs and then fine-tuning the BERT for a
specific resident in a shorter period of time than training the
model from scratch. As a result, for a new resident, the BERT
model does not need to be trained from scratch. This feature
of the model considerably improves the model’s generality.
In the following section, data are presented on running our
model in two different settings and comparing the outcomes,
keeping these two characteristics of transfer learning in mind:
(1) Training the BERT model from scratch and fine-tuning on
each resident’s data. (2) Using pre-trained BERT models and
fine-tuning on each resident’s ADL sequence data.

V. CASE STUDY

In this section, we discuss results from our case study
to show the efficiency of our proposed method in detecting
behavior changes in older adults. First, we introduce the
dataset. Then, we discuss the evaluation metrics and evaluation
process. Finally we present the results of our work.



Fig. 1. The Architecture of the BERT Model for Behavior Change Detection

A. Dataset

To evaluate the proposed BERT classifier for behavior
change detection, we chose the CASAS-Twor2010 dataset [10]
which consists of normal daily activities that two residents,
R1 and R2, performed in the WSU smart apartment testbed
during the 2009-2010 academic year. A few examples from
this dataset are shown in Table I. In this dataset, thirteen
types of indoor activities were recorded, such as: Bathing, Bed-
Toilet-Transition, Eating, Enter-Home, Housekeeping, Leave-
Home, Meal-Preparation, Personal-Hygiene, Sleep, Sleeping-
Not-in-Bed, Wandering-in-Room, Watch-TV, and Work. These
activities were recorded using motion sensors, door sensors
and temperature sensors. As shown in Table I, start and end
times for each activity were recorded, making it possible to
calculate the duration of the activity. Also, the time ordering
of activities was captured. As there is no overlap in the
times of activities performed, we can conclude that concurrent
activities were not considered. The CASAS-Twor2010 dataset
has 2,804,813 records which represent a total of 3744 activities
comprising 1903 activities of resident R1 and 1841 activities
of resident R2.

As the original data are not labeled, in order to use it for
training of the supervised change detection model, we injected
samples of behavior abnormalities by rearranging ADLs and
manipulating activity duration. For example, while in the
original ADL sequences eating occurs after meal preparation,
we reversed the ADLs’ order to inject partially misordered

sequences. We also created some random abnormalities by
shuffling the ADLs. We also intentionally made the abnormal
records frequent (i.e., oversampling) in order to avoid the
imbalanced data issues.

B. Evaluation Metrics

In this section, we indicate the metrics we used for eval-
uating the results of the BERT model for detecting behavior
changes. Accuracy is a widely-used metric for measuring the
accuracy of a prediction. It is computed by the sum of true
predictions divided by the total predictions (See Formula 3(a)).
While the model’s ability to distinguish positive and negative
classes can be measured by accuracy, it is not merely enough
to measure the efficiency of a predictor model.

The first issue with the accuracy metric is that it gives
equal importance to all classes. In problems that predicting one
class is of more importance than the other’s, such as anomaly
detection, it is required to use other evaluation metrics such
as recall and precision.

In Precision, the focus is on the positive class predictions
(i.e., true positive TP and false positive FP) as shown in
Formula 3(b). If the model predicts negative class poorly (i.e.,
false negative FN), it would not be caught by the Precision
result. Also, if the data is imbalanced, Precision would not be
sufficient for evaluation. Recall, which can be calculated from
Formula 3(c), takes into account the false negatives, which
are very important in fraud detection, anomaly detection, etc.



TABLE I
EXAMPLE DATA FROM CASAS-TWOR2010 DATASET.

Date Time Sensor ID Sensor State Activity

24-8-09 00:15:25 M034 ON R2 Sleep begin
24-8-09 00:15:27 M047 OFF

. . . .
24-8-09 00:16:27 M047 ON R1 Sleep end
24-8-09 00:16:29 M048 ON R1 Wandering in room begin

. . . .
24-8-09 00:23:44 M048 OFF
24-8-09 00:23:52 M048 ON R1 Wandering in room end
24-8-09 00:23:53 M047 ON R1 Sleep begin
24-8-09 00:23:53 M046 ON

. . . .
24-8-09 06:32:46 P001 507 R1 Sleep end
24-8-09 06:32:46 D005 CLOSE R1 Personal Hygiene begin
24-8-09 06:32:47 M038 OFF

. . . .
24-8-09 06:37:48 M040 OFF R1 Personal Hygiene end
24-8-09 06:38:22 P001 579 R1 Bathing begin
24-8-09 06:39:08 T004 20.5

. . . .
24-8-09 06:51:00 M040 OFF
24-8-09 06:51:02 P001 5053 R1 Bathing end
24-8-09 06:51:04 M038 OFF R1 Personal Hygiene begin

. . . .
24-8-09 06:54:37 D005 OPEN R1 Personal Hygiene end
24-8-09 07:07:50 M034 OFF R2 Sleep end

. . . .
24-8-09 07:07:57 M038 ON R2 Personal Hygiene begin

. . . .
24-8-09 07:08:45 M019 ON R1 Meal Preparation end

. . . .
24-8-09 07:08:48 M024 ON R1 Leave Home begin

. . . .
24-8-09 07:08:58 M024 OFF R1 Leave Home end

. . . .
24-8-09 07:10:43 M037 ON R2 Personal Hygiene end

Finally, the F1 measure is a combined metric which can be
computed according to Formula 3(d).

Accuracy =
TP + TN

TP + TN + FP + FN
(a)

Precision =
TP

TP + FP
(b)

Recall =
TP

TP + FN
(c)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(d)

(3)
Another useful metric for evaluating binary classifiers is

AUC that measures the area under the Receiver Operating
Characteristic (ROC) curve. AUC indicates how well the
model can distinguish between classes, whereas ROC is a
probability curve. The True Positive Rate (TPR) is displayed
against the False Positive Rate (FPR) on the ROC curve,
with TPR on the y-axis and FPR on the x-axis. Classifiers
that give curves closer to the top-left corner indicate a better
performance. The classifier becomes less accurate as the
curve approaches the 45-degree diagonal. The AUC of an
excellent model is near 1, indicating that it has a high level

of separability.
Unlike accuracy, AUC is independent from the decision

threshold. This feature makes it an excellent statistic for
evaluating the model in an unbiased way.

A key deficiency of the aforementioned metrics is that they
do not consider the model confidence in predicting classes
since these metrics do not reflect if a model predicts a true
class (TP or TN) with a high probability or a marginal
probability. This is why the model uses Cross Entropy or Log
Loss for training (See Formula 4, where p is the prediction
probability and y is the class label, 0 or 1). Predictions that
are closer to the class label receive a lower Cross Entropy loss
while the accuracy is a binary true/false for a specific sample.

CrossEntropy = −(y log(p) + (1− y) log(1− p)) (4)

C. Results:

In this section, we present the results of running the
BERT model for detecting behavior changes of two residents.
First, we train the predictor model with 90 percent of ADL
sequences of resident R1. We then evaluate the model using
the remaining 10 percent of the unseen ADL sequences of
resident R1 (Experiment 1). We also repeat this experiment
for resident R2 (Experiment 2).



TABLE II
RUN PARAMETERS

Parameter Value

Training Epochs 10
Loss function Cross Entropy
Learning Rate 2e-5
Warm up Proportion 0.1
Drop-out rate 0.1
Max Sequence Length 128

TABLE III
COMPARISON OF EXPERIMENTS.

Evaluation Metrics

Experiments Accuracy Precision Recall F1 AUC

E1 : Classifier for R1
ADLs trained on R1
ADLs

0.87 0.89 0.84 0.86 0.88

E2 : Classifier for R2
ADLs trained on R2
ADLs

0.82 0.88 0.75 0.81 0.83

E3 : Classifier for R2
ADLs trained on R1
ADLs

0.81 0.64 0.90 0.75 0.79

E4 : Classifier for R2
ADLs trained on R1
ADLs and fine-tuned
on R2 ADLs

0.84 0.69 0.90 0.78 0.82

In two separate experiments, we tested the model for
predicting behavior abnormalities of resident R2 without fine-
tuning (Experiment 3) and with fine-tuning (Experiment 4) on
resident R2 data. In experiment 3, we used a pre-trained model
which was trained on ADL sequences of resident R1 to predict
abnormalities in resident R2. In experiment 4, we fine-tuned a
pre-trained model using ADL sequences of resident R2, where
the pre-trained model is trained on ADL sequences of resident
R1. The intuition is that while different residents have their
unique routines of life, there are commonalities that can be
transferred from one model to the other (the Transfer Learning
feature in Transformers). We expect the former experiment to
show less accurate predictions. The reason is that different
residents are supposed to have their unique routine of life
which makes it unlikely to precisely predict their behavior
change without fine-tuning the model on their specific data.

We also determined the number of training epochs by
monitoring training loss and evaluation loss in order to avoid
under- or over-fitting. The goal was to train an accurate model
with training data (low training loss) that also shows promising
performance on the evaluation data (low evaluation loss). The
parameters we set for running the BERT-based classifier are
listed in Table II.

Table III shows the results of the four experiments for 10
training epochs. The high values of accuracy, AUC, precision,
and recall illustrate the capability of the BERT-based classifier
model in predicting behavior abnormalities for both residents
(E1 and E2). We acknowledge that training the model from
scratch for each new resident is inefficient and possibly

impossible. Therefore, experiments E3 and E4 were created to
investigate the transfer learning characteristic of Transformers
in this specific problem. In experiment E3, we assume that
we do not have access to resident R2’s ADL data. As a result,
we train the model using data from resident R1 and test it
using data from resident R2. The model predicts abnormalities
well (high accuracy and recall), but it has a significant False
Positive rate (noticeably poorer precision than E2), which
means the classifier incorrectly labels some normal patterns as
abnormal. In experiment E4, we use resident R2’s ADL data
to fine-tune the trained model from experiment E3. The results
show a slight increase in all metrics, which we interpret as the
capability of the model to transfer learned knowledge from
one resident’s behavior to predicting the behavior anomalies
of others.

Some sample outputs from the classifier are shown in Table
IV. The first three samples are correctly predicted as abnormal
with relatively high probabilities. The reason is that they have
clues of abnormal behavior such as long personal hygiene at
night or leaving home without returning, which are not usual
behavior of the resident. The next two samples (4 and 5) are
also correctly predicted as normal with high probabilities. The
last sequence is not classified correctly.

Our findings suggest that the BERT-based classifier is ca-
pable of detecting behavior abnormalities in ADL sequences.
Transfer learning has also proven to be useful in fine-tuning
a pre-trained model for a new resident. These results ac-
knowledge the applicability of Transformer models to the
behavior change detection problem through analyzing the ADL
sequences. It is also a significant finding that transfer learning
feature of Transformers is effective in training the models
for new residents without requiring a huge amount of data
collection and labeling for the new resident.

VI. DISCUSSION

As pre-trained BERT models are trained on general-domain
texts, mainly from the web, some researchers [33] recommend
training from scratch for the domain-specific data with training
tasks, i.e., Masked Language Modeling (MLM) and Next
Sentence Prediction (NSP). Still, fine-tuning is considered as
an important feature of Transformers that can be conducted for
the in-hand task. We suggest comparing two different training
approaches for future studies: i) training the model from
scratch with domain-specific data (through MLM and NSP
tasks) and fine tuning it for the specific task in-hand; and ii)
using a pre-trained BERT model, which is trained on general-
domain text, and then fine-tuning the model with domain-
specific data. The reason for suggesting these two approaches
is to determine which approach gives superior results for this
domain-specific data. Although, the proposed representation
of ADL sequences shares the same words/tokens with natural
language, the logic is different. That is, the order of tokens in
an ADL sequence does not follow the underlying logic of nat-
ural language. Also, we suggest testing different Transformer
models and architectures, such as Roberta [37], GPT-3 [38], or
BERT-Large, for building behavior change detection models.



TABLE IV
SAMPLES OF BERT-BASED ADL CLASSIFIER OUTPUT.

True Label Prediction

ID Input ADL Sequence Class ”0” Probability Class ”1” Probability Predicted Label

(1)
PersonalHygieneLongNight WorkShortNight SleepShort-
Night PersonalHygieneShortMidNight WorkShortMidNight
LeaveHomeShortMidNight

1 0.01 0.99 1

(2) PersonalHygieneMediumMidNight WorkShortMidNight
LeaveHomeShortMidNight 1 0.33 0.66 1

(3)
SleepShortNight PersonalHygieneMediumMorning
BathingMediumMorning MealPreparationShortMorning
LeaveHomeShortMorning

1 0.31 0.69 1

(4)

EnterHomeShortNight WorkShortNight PersonalHy-
gieneShortNight SleepShortMidNight BedToiletTran-
sitionShortMidNight PersonalHygieneShortMorning
LeaveHomeShortMorning EnterHomeshortMorning

0 0.9989 0.0010 0

(5)
SleepShortNight WorkShortNight SleepShortNight BedToi-
letTransitionShortNight SleepShortNight WorkShortMorn-
ing SleepShortMorning WatchTVShortNight

0 0.81 0.19 0

(6) WorkShortNight LeaveHomeShortNight EnterHomeShort-
MidNight SleepShortMidNight LeaveHomeShortMidNight 1 0.51 0.49 0

”0” is the Normal Class, and ”1” is the Abnormal Class.

Gradual change in older adult daily behavior is common,
especially in people with chronic disorders such as cognitive
impairment [39]. As Transformers have the capability of
learning long-term patterns in sequential data, gradual change
in older adult daily behavior should also be explored in future
research in order to determine their efficacy and generality in
such environments. Moreover, in a lower-level data analysis,
ADL impairment, which is found to be associated with chronic
health problems in older adults [19], might be detected from
sensor data by using Transformer models.

A major limitation of the supervised models is the scarcity
of labeled data. By rearranging the ADLs and manipulating
the duration of activities we were able to inject artificial
irregularities into the original data in this study. To reproduce
frequent behaviour aberrant patterns in future experiments, we
recommend collecting labeled abnormal ADL sequences from
residents with health issues.

VII. CONCLUSION

In this paper, we leveraged BERT Transformers in analyzing
older adults’ ADL sequences. Due to the fine-tuning capacity
of Transformers, they are a good fit for supervised tasks when
there is no access to a large, labeled training dataset. Their
architecture also allows for Parallel Computation, which works
hand in hand with the fine-tuning feature to make (near) real-
time abnormality detection possible. The Positional Encoding
feature in Transformers is a vital capacity leading to taking
into account the context of a token when encoding. Finally,
Transformers train in a Bi-Directional manner that allows for
learning interrelationships of tokens in a sequence based on
both pre- and post-tokens, resulting in a more accurate model.

This study contributes to the behavior abnormality detec-
tion literature by introducing a novel representation of daily
behavior. This representation, which is borrowed from natural
language, allows us to apply NLP sequence classifier models
on ADL data in order to perform different supervised and
unsupervised tasks including the behavior change detection
task, which is presented in this paper. To the best of our
knowledge, this is the first time that a BERT-based model
is used for training a classifier that classifies daily ADL
sequences into normal and abnormal classes. Also, transfer
learning proved to be helpful when it comes to fine-tuning a
pre-trained model for a new resident.

Behavior change detection in older adults, especially for
those with chronic diseases, can help to improve their quality
of life through providing on-time care and required pre-
cautions. It also can decrease the burden on caregivers by
mitigating the need for continuous home care.
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