2 Review of First-Order Logic

First-order logic (also called predicate logic) is an extension of propositional logic that is much more useful than propositional logic. It was created as a way of formalizing common mathematical reasoning. You should have seen first-order logic previously. This section is only review.

In first-order logic, you start with a nonempty set of values called the universe of discourse \(U \). Logical statements talk about properties of values in \(U \) and relationships among those values.

2.1 Predicates

In place of propositional variables, first-order logic uses predicates.

Definition 2.1. A *predicate* \(P \) takes zero or more parameters \(x_1, x_2, \ldots, x_n \) and yields either true or false. First-order formula \(P(x_1, \ldots, x_n) \) is the value of predicate \(P \) with parameters \(x_1, \ldots, x_n \). A predicate with no parameters is a propositional variable. If \(P \) takes no parameters then \(P \) is a first-order formula.

Suppose that \(U \) is the set of all integers. Here are some examples of predicates. There is no standard collection of predicates that are always used. Rather, each of these is like a function definition in a computer program; different programs contain different functions.

- We might define even\((n)\) to be true if \(n \) is even. For example even\((4)\) is true and even\((5)\) is false.
- We might define greater\((x, y)\) to be true if \(x > y \). For example, greater\((7, 3)\) is true and greater\((3, 7)\) is false.
- We might define increasing\((x, y, z)\) to be true if \(x < y < z \). For example, increasing\((2, 4, 6)\) is true and increasing\((2, 4, 2)\) is false.
2.2 Terms

A term is an expression that stands for a particular value in U. The simplest kind of term is a variable, which can stand for any value in U.

A function takes zero or more parameters that are members of U and yields a member of U. Here are examples of functions that might be defined when U is the set of all integers.

- A function with no parameters is called a constant. We might define function zero with no parameters to be the constant 0.
- We might define successor(n) to be $n + 1$. For example, successor(2) = 3.
- We might define sum(m, n) to be $m + n$. For example, sum(5, 7) = 12.
- We might define largest(a, b, c) to be the largest of a, b and c. For example, largest(3, 9, 4) = 9 and largest(4, 4, 4) = 4.

Definition 2.2. A term is defined as follows.

1. A variable is a term. We use single letters such as x and y for variables.
2. If f is a function that takes no parameters then f is a term (standing for a value in U).
3. If f is a function that takes $n > 0$ parameters and t_1, \ldots, t_n are terms then $f(t_1, \ldots, t_n)$ is a term.

For example, sum(sum(x, y), successor(z)) is a term.

The meaning of a term should be clear, provided the values of variables are known. Term sum(x, y) stands for the result that function sum yields on parameters (x, y) (the sum of x and y).
2.3 First-order formulas

Definition 2.3. A first-order formula is defined as follows.

1. \(\text{T} \) and \(\text{F} \) are first-order formulas.

2. If \(P \) is a predicate that takes no parameters then \(P \) is a first-order formula.

3. If \(t_1, \ldots, t_n \) are terms and \(P \) is a predicate that takes \(n > 0 \) parameters, then \(P(t_1, \ldots, t_n) \) is a first-order formula. It is true if \(P(v_1, \ldots, v_n) \) is true, where \(v_1 \) is the value of term \(t_1 \), \(v_2 \) is the value of term \(t_2 \), etc.

4. If \(t_1 \) and \(t_2 \) are terms then \(t_1 = t_2 \) is a first-order formula. (It is true if terms \(t_1 \) and \(t_2 \) have the same value.)

5. If \(A \) and \(B \) are first-order formulas and \(x \) is a variable then each of the following is a first-order formula.

 (a) \((A) \)
 (b) \(\lnot A \)
 (c) \(A \lor B \)
 (d) \(A \land B \)
 (e) \(\forall x A \)
 (f) \(\exists x A \)

The meaning of parentheses, \(\text{T}, \text{F}, \lnot, \lor \) and \(\land \) are the same as in propositional logic. Symbols \(\forall \) and \(\exists \) are called quantifiers. You read \(\forall x \) as “for all \(x \)” and \(\exists x \) as “for some \(x \)” or “there exists an \(x \)”.

By convention, quantifiers have higher precedence than all of the operators \(\land, \lor \), etc.

Examples of first-order formulas are:
1. \(P(\text{sum}(x, y)) \) says that, if \(v = \text{sum}(x, y) \), then \(P(v) \) is true. Its value (true or false) depends on the meanings of predicate \(P \) and function \(\text{sum} \), as well as on the values of variables \(x \) and \(y \).

2. \(\forall x(\text{greater}(x, x)) \) says that \(\text{greater}(x, x) \) is true for every value \(x \) in \(U \). Using the meaning of \(\text{greater}(a, b) \) given above, \(\forall x(\text{greater}(x, x)) \) is clearly false, since no \(x \) can be greater than itself.

3. \(\neg \forall x(\text{greater}(x, x)) \) says that \(\forall x(\text{greater}(x, x)) \) is false. That is true.

4. \(\exists y(y = \text{sum}(y, y)) \) says that there exists a value \(y \) where \(y = y + y \). That is true since \(0 = 0 + 0 \).

5. \(\forall x(\exists y(\text{greater}(y, x))) \) says that, for every value \(v \) of \(x \), first-order formula \(\exists y(\text{greater}(y, v)) \) is true. That is true. If \(v = 100 \), then choose \(y = 101 \), which is larger than 100. If \(v = 1000 \), choose \(y = 1001 \). If \(v = 1,000,000 \), choose \(y = 1,000,001 \).

6. \(\exists y(\forall x(\text{greater}(y, x))) \) says that there exists a value \(v \) of \(y \) so that \(\forall x(\text{greater}(v, x)) \). That is false. There is no single value \(v \) that is larger than every integer \(x \).

Operators \(\to, \leftrightarrow \) and \(\equiv \) have the same meanings in first-order logic as in propositional logic.

2.4 Sentences

Example 1 above uses variable \(x \) and \(y \), and its value cannot be determined without knowing the values of \(x \) and \(y \). It only makes sense if the values of \(x \) and \(y \) have already been specified. Think of them as similar to global variables in a function definition in a computer program.

The other examples above do not depend on any variable values. They manage their own variables, and are similar to a function definition that only uses local variables.

We say that variable \(x \) is **bound** if it occurs inside \(A \) in a first-order formula of the form \(\forall x A \) or \(\exists x A \).

Definition 2.4. A first-order formula is a **sentence** if all of its variables are bound.
Table 2-1. Some valid equivalences

<table>
<thead>
<tr>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists x P(x) \lor \neg \exists x P(x)$</td>
</tr>
<tr>
<td>$\forall x P(x) \land \exists y Q(y) \equiv \exists y Q(y) \land \forall x P(x)$</td>
</tr>
<tr>
<td>$\neg(\forall x A) \equiv \exists x (\neg A)$</td>
</tr>
<tr>
<td>$\neg(\exists x A) \equiv \forall x (\neg A)$</td>
</tr>
<tr>
<td>$\forall x (A \land B) \equiv \forall x A \land \forall x B$</td>
</tr>
<tr>
<td>$\forall x A \rightarrow \exists x A$</td>
</tr>
</tbody>
</table>

2.5 Validity

Recall that a propositional formula is *valid* if it is true for all values of the variables that it contains. There is a similar concept of validity for first-order formulas.

Definition 2.5. Suppose that S is a sentence of first-order logic. (That is, it does not contain any unbound variables.) We say that S is *valid* if it is true regardless of the universe of discourse and the meanings of the predicates and functions that it mentions.

One way to get a valid first-order formula is to substitute first-order formulas into a propositional tautology. The following table lists two valid first-order formulas found in that way. Table 2-1 lists a few valid first-order equivalences, the first two of which are examples of substituting a first-order formula into a propositional equivalence.

2.6 Notation

First-order logic notation is usually extended to include common mathematical notation. For example, we write $x > y$ rather than greater(x, y), and $x + y$ rather than sum(x, y). Constants such as 0, 1 and 200 are also usually allowed. Instead of writing even(x), we write “x is even”. For example,

$$\forall x (x \text{ is even} \land y \text{ is even} \rightarrow x + y \text{ is even})$$
is true. Those notational changes make first-order logic more readable.