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15 Examples of NP-Complete Problems

15.1 SAT

Section 13.4 defines the Satisfiability Problem for Propositional Logic (SATPL).
We have seen that SATPL is in NP, and noticed in (Section 12) that appears
to be difficult to solve.

Here, we look at a restriction of that problem to a certain kind of proposi-
tional formula.

Definition 15.1. A literal is either a variable or its negation. In this section,
we will use lower case variables such as x, y and z as propositional variables.
Rather than using ¬y to indicate negated variable y, we write y. Literal x is
a positive literal and y is a negative literal .

Definition 15.2. A clause is a disjunction (∨) of one or more literals. For
example, x ∨ z ∨ y is a clause. A literal by itself is a clause with just one
literal.

Definition 15.3. A clausal formula is a conjunction (∧) of one or more
clauses. For example, (x) ∧ (y ∨ z) ∧ (x ∨ y ∨ z) is a clausal formula.

Definition 15.4. SAT is the following decision problem.

Input. A clausal propositional formula φ.
Question. Is φ satisfiable?

Theorem 15.1. SAT ∈ NP.

Proof. Theorem 13.1 shows that SATPL is in NP. But SAT is a restriction
of SATPL. The evidence checker for SATPL also works for SAT.

♦ ♦

Cook and Levin independently showed that SAT is NP-complete. The proof
is too long for this course, so we will need to accept it as proved.
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Theorem 15.2. (Cook/Levin Theorem) SAT is NP-complete.

That gives us evidence (but short of a proof, since it depends on the conjec-
ture that Px 6= NP) that there is no polynomial-time algorithm for SAT.

15.2 Proving NP-completeness

SAT is proved NP-complete using a difficult kind of reduction called a generic
reduction. If all you know about X is that X ∈ NP, you can ask someone to
give you an evidence checker for X. The generic reduction from X to SAT
converts that evidence checker into a propositioal formula.

But we don’t need to do a generic reduction for every proof of NP-completeness.

Theorem 15.3. Suppose that language B ∈ NP, A is NP-complete and
A ≤p B. Then B is NP-complete.

Proof. Since B ∈ NP, it suffices to show that X ≤p B for every language
X ∈ NP. Since A is NP-complete, we know that X ≤p A for every language
X ∈ NP. Since A ≤p B and relation≤p is transitive (Theorem 14.3), X ≤p B
for every language X ∈ NP.

♦ ♦

15.3 3-SAT

We can restrict the satisfiability problem further.

Definition 15.5. A propositional formula is in 3-clausal form if it is in
clausal form and has exactly 3 literals per clause. For example, (x∨ y ∨ z)∧
(y ∨ z ∨ w) is in 3-clausal form. A propositional formula in 3-clausal form is
called a 3-clausal propositional formula.

Definition 15.6. 3-SAT is the following decision problem.

Input. A 3-clausal propositional formula φ.
Question. Is φ satisfiable?

Theorem 15.4. 3-SAT is NP-complete.
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Proof. Clearly, 3-SAT is in NP. (Use the same evidence checker as for
SATPL.) So, by Theorem 15.3, it suffices to reduce SAT to 3-SAT.

We need a polynomial-time algorithm that takes a clausal formula φ and
builds a 3-clausal formula φ′ such that φ is satisfiable if and only if φ′ is
satisfiable. Our algorithm will convert each clause of φ separately.

Clauses that already have 3 literals are left alone. Clauses with fewer than 3
literals are easy to deal with by duplicating one or more of the literals. For
example, clause (A ∨B) is equivalent to (A ∨ A ∨B).

That only leaves long clauses , which have more than 3 literals. As long as
there is at least one long clause, we find one with n literals and replace it by
a clause that has n − 1 literals, plus a clause with 3 literals. By repeating
that, we can get rid of all of the long clauses. It is just a matter of ensuring
that each step preserves satisfiability.

Suppose that φ contains clause

C = (`1 ∨ `2 ∨ · · · ∨ `n)

where n > 3. Create a new variable u and replace C by pair of clauses

C ′ = (`1 ∨ · · · ∨ `n−2 ∨ u) ∧ (u ∨ `n−1 ∨ `n)

yielding new formula φ1.

Claim 1. If φ1 is satisfiable then φ is satisfiable. In fact, every truth-value
assignment that satisfies φ1 also satisfies φ.

Proof of Claim 1. Suppose φ1 is satisfiable. Choose a truth-value assign-
ment a that makes φ1 true. That assignment must make all of the clauses
other than C in φ true, since those clauses also occur in φ1. We just need to
argue that assignment a also makes clause C true.

Suppose a(u) = F. Then, because a makes clause (`1 ∨ · · · ∨ `n−2 ∨u) true, a
must make at least one of `1, . . . , `n−2 true. But that means a makes clause
C true.

Suppose that a(u) = T. Then, because a makes clause (u ∨ `n−1 ∨ `n) true,
a makes at least one of `n−1 and `n true. Again, a makes clause C true.

Claim 2. If φ is satisfiable then φ1 is satisfiable.
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Proof of Claim 2. Suppose that φ is satisfiable, and choose a truth-value
assignment a that makes φ true. Clause C must have at least one true literal.

If a makes `i true where i ≤ n− 3, then extend a by adding u = F. The new
truth-value assignment makes clause (`1 ∨ · · · ∨ `n−2 ∨ u) true because `i is
true, and it makes clause (u ∨ `n−1 ∨ `n) true because u = F.

If a makes `i true where i > n− 3, then extend a by adding u = T. You can
check that both clauses of C ′ must be true.

♦ ♦

15.4 The Vertex Cover Problem

Recall from Section 13.4.2 that a vertex cover of a simple graph is a set C
of vertices so every edge is incident on at least one vertex in C. VCP is the
following decision problem.

Input. A simple graph G and a positive integer k.
Question. Does there exist a vertex cover C of G where |C| ≤ k?

It is worth asking whether there is an obvious polynomial-time algorithm for
VCP. One idea is to use a greedy algorithm, which tries to optimize globally
by optimizing locally. Since we want to select as few vertices as possible
to cover all of the edges, it makes sense to start by selecting a vertex with
highest degree, since it covers as many edges as possible with the first pick.
After that, remove the selected vertex and all of the edges that it covers, and
repeat, again selecting a vertex with the highest degree.

That algorithm seems appealing, but does it work? Look at graph G1 in
Figure 15-1. It has a vertex of degree 4, and all other vertices have degree 2
or 3. But the degree 4 is not part of any smallest vertex cover of G1! If you
are trying to determine whether G1 has a vertex cover of size at most 4, you
will be led astray by selecting the degree 4 vertex. Something is wrong with
the greedy Vertex Cover algorithm.

It is tempting to try to patch the greedy algorithm. But is that worthwhile?
The following theorem shows that it is a waste of time.

Theorem 15.5. VCP is NP-complete.

4



If the conjecture P 6= NP is true then there does not exist a polynomial-time
algorithm for VCP. Even if the conjecture is wrong, finding a polynomial-
time algorithm for VCP is as difficult as proving that P = NP, since the
existence of such an algorithm implies P = NP.

Proof of Theorem 15.5 Section 13.4.2 shows that VCP is in NP. We
only need to reduce a known NP-complete problem to VCP. Let’s show that
3-SAT ≤p VCP.

We need a polynomial-time algorithm that takes a propositional formula φ in
3-clausal form and builds a pair consisting of a simple graph G and a positive
integer k, where φ is satisfiable if and only if G has a vertex cover of size at
most k.

The first step is construction of G. There are three parts. Part 1 consists of
a pair of vertices for each variable that occurs in φ, which we call a vertex
gadget . If x is a variable, add the following, where one vertex is labeled x
and the other is labeled x.

��������x x

Part 2 consists of three vertices for each clause of φ, all connected to one
another and labeled by the three literals in the clause, which we call a clause
gadget . For clause (x ∨ y ∨ z), we add
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Part 3 does not add any vertices, but adds edges between part 1 vertices and
part 2 vertices. Specifically, each part 2 vertex is connected to the part 1
vertex that has the same label.

Here is an example. Suppose

φ = (x ∨ y ∨ z) ∧ (y ∨ z ∨ w).

Then graph G looks like this:
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That finishes the description of G. Suppose that φ has v variables and c
clauses. Any vertex cover of G will need to have size at least v + 2c, one to
cover each vertex gadget and two to cover each clause gadget. Let’s choose
k = v + 2c, not leaving any room for extra vertices in the vertex cover.

Claim 1. If φ is satisfiable then G has a vertex cover of size k.

Proof of Claim 1. Suppose φ is satisfiable, and let a be a truth-value
assignment that makes φ true. Here is how to select a vertex cover of G of
size k.

(a) For each variable x, if a(x) = T then select the vertex gadget-vertex
labeled x. Otherwise, select the vertex-gadget vertex labeled x. That
puts one vertex for each vertex gadget in the vertex cover, which covers
the edges within vertex gadgets.

(b) For each clause C = (`1 ∨ `2 ∨ `3), find a literal `i that truth-value
assignment a makes true. Select the clause-gadget vertices that corre-
spond to the other two literals, leaving the literal labeled `i unselected.
That covers all edges within clause gadgets.

There is no room to select any more vertices, but the part 3 edges between
clause gadgets and vertex gadgets need to be covered. The unselected ver-
tex u in a clause gadget corresponds to a true literal `i (under truth-value
assignment a). A part 3 edge connects u to a vertex-gadget vertex v labeled
`i, and, since `i is true, vertex v was selected, and edge {u, v} is covered by
v. No more vertices need to be added.

Claim 2. If G has a vertex cover of size k then φ is satisfiable.
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Proof of Claim 2. Suppose G has a vertex cover S of size k. We know that
S must select exactly one vertex from each vertex gadget and exactly two
vertices from each clause gadget. Define truth-value assignment a so that
a(x) = T if the vertex-gadget vertex labeled x is in S, and choose a(x) = F
if the vertex-gadget vertex labeled x is in S.

Consider a clause gadget C. It has one vertex u that is not in vertex cover S.
Suppose u is labeled by `. There is an edge between u and a vertex-gadget
vertex v that is also labeled `. Since S is required to cover all edges, and
S does not contain u, S must contain v. But truth-value assignment a is
defined so that literal ` is true; if v is labeled x then a(x) = T, and if v
is labeled x then a(x) = F, making x true. Therefore, the clause of φ that
corresponds to clause gadget C has a true literal, namely `.

The two claims show that the algorithm described above is a mapping re-
duction from 3-SAT to VCP. It should be obvious that the algorithm runs in
polynomial time.

♦ ♦

15.5 The Independent Set Problem

Definition 15.7. Suppose G = (V,E) is a simple graph. An independent
set of G is a set S ⊆ V such that no two members of S are connected by an
edge. That is, if u and v are different members of S, then{u, v} 6∈ E.

Definition 15.8. The Independent Set Problem (ISP) is the following deci-
sion problem.

Input. A simple graph G = (V,E) and a positive integer k.
Question. Does G have an independent set of size at least k?

Look at graph G1 in Figure 15-1. Some vertices are solid black and some are
circles. Notice that the solid vertices are a vertex cover of G and the empty
circles are an indenpendent set of G. Is that a coincidence? Think about it.

Theorem 15.6. Suppose G = (V,E) is a simple graph and S ⊆ V . S is a
vertex cover of G if and only if S is an independent set of G.
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Figure 15-1 Graph G1. The solid vertices are an independent set of G1

and the empty circles are a vertex cover of G1.

Proof. Suppose that G = (V,E). Saying that S is a vertex cover of G is
equivalent to the following logical statement.

∀u∀v({u, v} ∈ E → (u ∈ S ∨ v ∈ S)).

Using the law of the contrapositive, that is equivalent to

∀u∀v(¬(u ∈ S ∨ v ∈ S)→ {u, v} 6∈ E).

Using DeMorgan’s law and the definition of S, that is equivalent to

∀u∀v((u ∈ S ∧ v ∈ S)→ {u, v} 6∈ E).

That is exactly what it means for S to be an independent set of G.

♦ ♦

Theorem 15.7. VCP ≤p ISP.

Proof. Suppose that G has n vertices. For any set of vertices S of G,
|S| = n−|S|. That means f(G, k) = (G, n−k) is a polynomial-time reduction
from VCP to ISP, since

(G, k) ∈ VCP ↔ G has a vertex cover of size at most k

↔ G has an independent set of size at least n− k
↔ (G, n− k) ∈ ISP

♦ ♦
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Corollary 15.8. ISP is NP-complete.

Proof. It is clear that ISP ∈ NP. Theorem 15.7 shows that known NP-
complete problem VCP polynomial-time reduces to ISP.

♦ ♦

15.6 The Clique Problem

Another NP-complete problem about graphs is the Clique Problem.

Definition 15.9. Suppose that G = (V,E) is a simple graph. A set S ⊆ V
is a clique if every pair of vertices in S are adjacent. That is, S is a clique if
for all pairs of different vertices u and v in S, {u, v} ∈ E.

Definition 15.10. The Clique Problem (CP) is the following decision prob-
lem.

Input. A simple graph G and a positive integer k.
Question. Does G have a clique of size at least k?

Definition 15.11. Suppose G = (V,E) is a simple graph. Then G = (V,E)
is the complement of G, formed by complementing the set of edges. That is
G has an edge between different vertices u and v if and only if G does not
have an edge between u and v.

The following Theorem 15.9 is immediate from the definitions of independent
sets and cliques.

Theorem 15.9. Suppose G = (V,E) is a simple graph. S is an independent
set of G if and only if S is a clique of G.

Theorem 15.10. ISP ≤p CP

Proof. By Theorem 15.9, function f(G, k) = (G, k) is a polynomial-time
reduction from ISP to CP.

♦ ♦
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15.7 The Subset Sum Problem

The Subset Sum Problem is a generalization of the Partition Problem that
we looked in Section NPSec.

Definition 15.12. The Subset Sum Problem (SSP) is the following decision
problem.

Input. A list x1, . . . , xn of positive integers and a positive integer K.
Question. Does there exist an index set I ⊆ {1, . . . , n} so that∑

i∈I
xi = K?

Theorem 15.11. SSP ∈ NP.

Proof. The question in the definition of SSP is a question of existence. That
suggests using I, the thing whose existence is questioned, as the evidence.
Here is a polynomial-time evidence checker for SSP.

Evidence checker for SSP

Input. List x1, . . . , xn of positive integers and posi-
tive integer K

Evidence. Index set I ⊆ {1, . . . , n}
Requirement. Is

∑
i∈I

xi = K?.

♦ ♦

Theorem 15.12. 3-SAT ≤p SSP.

Proof. Like the proof of Theorem 15.5, showing that 3-SAT ≤p VCP,
this proof requires some thought and some gadgetry. A polynomial-time
reduction from 3-SAT to SSP is a polynomial-time computable function
f(φ) = (L,K) where φ is a propositional formula in 3-clausal form, L = x1,
. . . , xn is a list of positive integers and K is a positive integer so that φ is
satisifiable if and only if (L,K) ∈ SSP.

Writing a program for the reduction is not very informative. It is much easier
to understand the reduction from an example. Suppose that φ is

(x ∨ y ∨ z) ∧ (y ∨ z ∨ w) ∧ (w ∨ x ∨ z)
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w z y x c1 c2 c3
Nx: 1 1 0 0
Nx: 1 0 0 1
Ny: 1 0 1 0 0
Ny: 1 0 0 1 0
Nz: 1 0 0 0 1 1
Nz: 1 0 0 1 0 0
Nw: 1 0 0 0 0 0 1
Nw: 1 0 0 0 0 1 0
P1,1: 1 0 0
P1,2: 1 0 0
P2,1: 0 1 0
P2,2: 0 1 0
P3,1: 0 0 1
P3,2: 0 0 1
K: 1 1 1 1 3 3 3

Figure 15-2. List L consists of Nx and Nx for each variable x plus Pi,1

and Pi,2 for each clause ci. Numbers are written in base 10. Notice that
the sum can never involve a carry since there are no more than five 1s in
any column.

with clauses c1, c2 and c3. The result (L,K) of f(φ) is shown in Figure 15-2.
List L is broken into two parts.

Part 1 of list L has two numbers Nx and Nx for each variable x. Think of
those numbers written in base 10, with each number having two sections, the
variable section and the clause section. The variable section has a column
for each variable and the clause section has a column for each clause.

1. In the variable section, Nx and Nx each have a 1 in the column for x,
with all other digits being 0.

2. In the clause section, Nx has a 1 in column ci if x occurs in clause ci,
and it has a 0 in column ci otherwise. Similarly, Nx has a 1 in column
ci if x occurs in clause ci, and a 0 in column ci otherwise.

Part 2 of list L has two numbers Pi,1 and Pi,2 for each clause ci, which both
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contain only a 1 in the column that corresponds to ci, as shown in Figure
15-2. They are used as padding

Claim 1. If φ is satisfiable then there is a way to select numbers from list
L whose sum is K.

Proof of Claim 1. Suppose that a is a truth-value assignment that makes
φ true. It tells which numbers to select to make a sum of K. First, select
a true literal from each clause. If literal x is selected, put Nx into the list
of selected numbers. If literal x is selected, put Nx into the list of selected
numbers. If neither x nor x is selected, it does not matter; put Nx into the
list of selected numbers.

Notice that the sum of the selected numbers has exactly one 1 in each column
the variable section, so the part of K consisting of 1s is correct. We need to
make sure the section of K consisting of 3s is correct. Because each clause
contains a true literal, there must be at least one 1 in each clause column.
But the total number of 1s in a single clause column in part 1 can be at most
3 since each clause contains 3 literals. If a clause column has one 1, then
select both of the padding (part 2) numbers for that column to make a total
of exactly 3. If there are two 1’s, select one of the padding numbers. If there
are three 1’s, do not select any of the padding numbers for that clause.

The sum of the selected numbers is exactly K.

Claim 2. If it is possible to select numbers from list L whose sum is K then
φ is satisfiable.

Proof of Claim 2. Because each variable column must sum to 1, exactly
one of Nx and Nx must have been chosen for each variable x. Define truth-
value assignment a so that a(x) = T if Nx is selected and a(x) = F if Nx is
selected.

The selected numbers must sum to 3 in each clause column. At most two 1s
in column i can come from padding numbers. The third must come from Nx,
where x occurs in clause ci, or from Nx where x occurs in clause ci. That
means ci contains a true literal under truth-value assignment a.

The two claims show that the algorithm described above is a mapping re-
duction from 3-SAT to SSP. It should be obvious that the algorithm runs in
polynomial time.

♦ ♦
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15.8 Graph Coloring Problems

Let’s look at some known NP-complete problems without proving them NP-
complete.

Definition 15.13. Suppose that G is a simple graph and k is a positive
integer. Say that G is k-colorable if it is possible to color each vertex of G
with one of k colors so that no two adjacent vertices have the same color.

Definition 15.14. The Graph Coloring Problem is the following decision
problem.

Input. A simple graph G and a positive integer k.
Question. Is G k-colorable?

The Graph Coloring Problem is clearly in NP. The question asks whether
there exists a way to color the vertices of G so that now two adjacent vertices
have the same color. The obvious evidence to request is the coloring.

Evidence checker for Graph Coloring

Input Simple graph G and positive integer k.

Evidence Assignment A of one of k colors to each ver-
tex of G.

Requirement Every edge of G connects two vertices that
are assigned different colors in color assign-
ment A.

If you try to color some graphs by hand, you can get an idea of how difficult
Graph Coloring can be. The Graph Coloring Problem is known to be NP-
complete. In fact, it is NP-complete even if k is fixed at 3.

Definition 15.15. The 3-Coloring Problem is the following decision prob-
lem.

Input. A simple graph G.
Question. Is G 3-colorable?

Graph Coloring is so difficult, it can even be restricted further and yet remain
NP-complete. Recall that a graph is planar if it can be drawn in the plane
(on a piece of paper, if you like) so that no two edges cross one another.
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Definition 15.16. The Planar 3-Coloring Problem is the following decision
problem.

Input. A planar simple graph G.
Question. Is G 3-colorable?

The Planar 3-Coloring Problem is NP-complete. But that does not mean
that all graph coloring problems are NP-complete. For example, 2-coloring
is easy. Also, if G is known to be a planar graph, then 4-coloring is trivial:
the answer is always yes, by the following.

Theorem 15.13. (The 4-Color Theorem) Every planar graph is 4-
colorable.

15.9 Hamilton Cycles and Hamilton Paths

Definition 15.17. Suppose that G is a simple graph. A simple cycle in G is
a cycle that does not contain any vertex more than once. A Hamilton Cycle
is a simple cycle that contains every vertex.

Not every graph has a Hamilton cycle. You should be able to find a graph
that has a Hamilton cycle and another that does not.

Definition NPCExampleSec.18. The Hamilton Cycle Problem is the fol-
lowing decision problem.

Input. A simple graph G.
Question. Does G have a Hamilton cycle?

Imagine that G has been drawn on paper (possibly with edges crossing). The
Hamilton Cycle Problem asks whether it is possible to draw a cycle, following
the edges, that hits every vertex exactly once, without lifting your pencil off
the paper.

It is easy to show that the Hamilton Cycle Problem is in NP. The obvious
evidence is a Hamilton cycle.
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Evidence checker for Hamilton Cycle

Input Simple graph G with n vertices.

Evidence Sequence v1, . . . , vn of vertices of G.

Requirement v1, . . . , vn contains every vertex exactly once,
v1 = vn and for i = 1, . . . , n− 1, {vi, vi+1} is
an edge of G.

The Hamilton Cycle Problem is known to be NP-complete. A related prob-
lem, also NP-complete, is the Hamilton Path Problem.

Definition 15.19. Suppose that G is a simple graph. A simple path in G is
a path that does not contain any vertex more than once. A Hamilton Path
is a simple path that contains every vertex (exactly once).

Definition NPCExampleSec.20. The Hamilton Path Problem is the fol-
lowing decision problem.

Input. A simple graph G.
Question. Does G have a Hamilton path?

15.9.1 Euler Cycles

A problem that is at least superficially related to the Hamilton Cycle Prob-
lem is the Euler Cycle Problem. (Leonard Euler’s last name is pronounced
“Oiler”.)

Definition NPCExampleSec.21. Suppose that G is a simple graph. An
Euler Cycle in G is a cycle that contains each edge exactly once.

Not every graph has an Euler cycle. You should be able to find a graph that
has an Euler cycle and another that does not.

Definition NPCExampleSec.22. The Euler Cycle Problem is the follow-
ing decision problem.

Input. A simple graph G.
Question. Does G have an Euler cycle?

How difficult is it to determine whether a graph contains an Euler cycle? It
is easy to see that the Euler Cycle Problem is in NP.
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Evidence checker for Euler Cycle

Input Simple graph G with n vertices.

Evidence Sequence v1, . . . , vn of vertices of G.

Requirement v1 = vn, for i = 1, . . . , n− 1, {vi, vi+1} is an
edge of G (so v1, . . . , vn is a cycle) and cycle
v1, . . . , vn uses each edge exactly once.

So we have an upper bound on the difficulty of solving the Euler Cycle Prob-
lem: it is in NP, so is, to within a polynomial, no worse than SAT. But that
is not a lower bound . It might be that the Euler Cycle Problem is easy to
solve.

And in fact, it is. Graph G has an Euler cycle if and only if every vertex has
even degree. That is easy to check. Not only is the Euler Cycle Problem in
P, but it is solvable in time O(n).

There is a lesson in that. You cannot inspect a problem and conclude, based
on its similarity to another problem, that it is an easy or a difficult problem.
To show that a problem is in P, find a polynomial-time algorithm for it, and
make sure that the algorithm works. To show that a problem is NP-complete,
show that it is in NP and that a known NP-complete problem reduces to it
in polynomial time. There are no shortcuts.

prev next
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