
Computer Science 2530

April 17, 2020

Happy Friday, April 17.

We are very close to the end. Today, we will look briefly at hash
functions.

Tables

Page 43A discusses tables. Think of a table as a telephone book or a
dictionary. You look up one piece of information, such as a name, and
you get some associated information, such as a telephone number.

With minor modifications, height-balanced binary search trees can be
turned into an implementation of tables where lookup, insertion and
removal for a table of size n takes Θ(log

2
(n)) time even in the worst

case. That is very fast. Since log
2
(1, 000, 000, 000) is about 30, the cost

is small even if you have a billion things in your table.

(Recall that Θ(f(n)) means approximately proportional to f(n). Re-
member that it takes Θ(log

2
(n)) time per operation for a height-balanced

binary search tree. You will see that on a test.)

But can we do better still? It turns out we can, if instead of worst case
we are willing to settle for average case.

Hash functions

Page 43B describes the idea of a hash function, and gives an example of
one. Hash functions are not pretty, and you do not need to understand
the example. The idea is that a hash function takes a value (typically
a string) and gives a large integer.

A hash function h(x) is a function, and if you compute h(”kangaroo”)
twice, you will get exactly the same result both times. But a hash
function should appear to choose its answers at random, if you don’t
look too carefully.

Hash tables

A hash table is an array. Suppose the array has size N . The idea
is to store string s (and any information associated with s) at index

1



h(s) mod n in the array. If you want to look up s, you recompute h(s)
and look at index h(s) mod n, and there is what you are looking for!

Of course, there is a catch. It can be the case that h(s1) mod N and
h(s2) mod N are the same value. What then? That is called a collision.

That is not really such a big problem. We store a linked list at each
index in the array. If five different strings are stored at index 1000, then
the linked list at index 1000 will have 5 values in it. We can search the
list.

A key feature of hash tables is that we try to keep the array size N

very roughly the same as the number n of things in the table. Then, on
average, there is only one thing in each linked list. (It is good enough
for N and n to be within a factor of 10 of one another.) As more things
are inserted, we need to make the array larger.

Since the hash function appears to be random, it spreads values roughly
uniformly among the linked lists.

Assuming all goes well, the average time to do a lookup, insertion or
removal in a hash table is Θ(1). That is, the average is a constant,
independent of the number of things in the table. If you get nothing
else out of this, remember that.

Suppose that you are Google and you have an unbelievably large amount
of data scraped off the internet. You can see the appeal of hash tables.
It does not matter how much information you are remembering. The
time needed to look something up is always the same. That goes a long
way toward explaining how Google can respond so quickly to a query.

2


