Happy Thursday, April 2.

Analysis of algorithms is concerned with determining how much time (or memory) an algorithm uses, as a function of the size of the input.

We will be spending just a little time looking at analysis of algorithms. The ideas are simple. The key is to pay attention to definitions and facts. Read the material and learn the facts.

Functions

You should be familiar polynomials, such as \(n^2 + 5n \). For our purposes, the only characteristic of a polynomial that matters is the degree of the polynomial. \(n^2 + 5n \) is a quadratic polynomial (degree 2).

An important function is \(\log_2(n) \), the logarithm to base 2 of \(n \). The logarithm grows very slowly as \(n \) grows. You can get an estimate of \(\log_2(n) \) by starting with \(n \) and doing a sequence of halvings, stopping at 1, rounding down to the nearest integer at each step. Suppose that \(n = 10 \).

\[
\begin{align*}
10 \\
5 \\
2 \\
1
\end{align*}
\]

There are 4 numbers, but only three steps of halving and rounding down to the nearest integer. That tells you that \(\log_2(10) \approx 3 \), because it took 3 steps of halving. In fact, the estimate is off by no more than 1; \(3 \leq \log_2(10) \leq 4 \). Let’s do the same thing starting at 35.

\[
\begin{align*}
35 \\
17 \\
8 \\
4 \\
2 \\
1
\end{align*}
\]

It takes 5 steps of halving to reach 1. So \(5 \leq \log_2(35) \leq 6 \).
Exercises

Read page 35A in the notes. Do the exercises at the bottom of page 35A.

Big-O notation

We would like to get a rough estimate of how large a function is. Suppose that $f(n)$ and $g(n)$ are two functions of n.

We say that $f(n)$ is $O(g(n))$ (f(n) is “big Oh” of $g(n)$) provided there is a constant c so that $f(n) \leq cg(n)$.

That definition is not complicated. Here are some examples.

Example. n^2 is $O(3n^2 + 1)$. Choose $c = 1$.

Example. $3n^2 + 1$ is $O(n^2)$. Choose $c = 4$. Notice that

$$3n^2 + 1 \leq 3n^2 + n^2 = 4n^2$$

All you need to remember about polynomials is this.

1. Suppose that $f(n)$ and $g(n)$ are both polynomials of degree d. Then $f(n)$ is $O(g(n))$.

2. Suppose that $f(n)$ is a polynomial of degree d_f and $g(n)$ is a polynomial of degree d_g. Then $f(n)$ is $O(g(n))$ exactly when $d_f \leq d_g$.

Example. n^4 is $O(5n^5)$ because n^4 has degree 4, $5n^5$ has degree 5 and $4 \leq 5$.

Example. n^5 is not $O(n^4)$ because $5n^5$ has degree 5, n^4 has degree 4, and $5 \nleq 4$.

Big-Theta notation

There is another notation that is more precise than big-O notation. Θ is an upper case Greek letter theta.

Suppose that $f(n)$ and $g(n)$ are two functions of n. We say that $f(n)$ is $\Theta(g(n))$ (f(n) is big-Theta of $g(n)$) provided
1. \(f(n) \) is \(O(g(n)) \).

2. \(g(n) \) is \(O(f(n)) \).

For polynomials, all you need to know is: Suppose \(f(n) \) is a polynomial of degree \(d_f \) and \(g(n) \) is a polynomial of degree \(d_g \). Then \(f(n) \) is \(\Theta(g(n)) \) exactly when \(d_f = d_g \).

For example:

Example. \(3n^3 \) is \(\Theta(20n^3 + n^2) \).

Example. \(10n^2 + 2 \) is \(\Theta(n^2) \).

Example. \(n^2 \) is not \(\Theta(n^3) \).

Example. \(n^3 \) is not \(\Theta(n^2) \).

Big-O and big-Theta notation and algorithms

When we want to know how efficient an algorithm is, we ideally find a function \(f(n) \) so that the algorithm takes time that is \(\Theta(f(n)) \) on inputs of size \(n \).

Example. Suppose that \(s \) is a null-terminated string of length \(n \). Function \(\text{strlen}(s) \) takes time that is \(\Theta(n) \) to find the length of \(s \). Why? Because it looks at each character in \(s \) once.

Example. Suppose that \(L \) is a linked list whose length is \(n \). It takes time that is \(\Theta(n) \) to find the length of \(L \).

Example. Suppose that \(s \) is a null-terminated string of length \(n \). How much time does it take to compute \(\text{strlen}(s) \) \(n \) times? If you buy 20 things and they cost $5 each, then you pay $100. You multiply. If you do \(n \) steps and each step takes time about \(n \), then the total time is about \(n^2 \). You multiply. So it takes time \(\Theta(n^2) \) to compute \(\text{strlen}(s) \) \(n \) times.

Example. Suppose that \(x \) and \(y \) are two values of type \text{int}. It takes only one machine-language instruction to compute \(x + y \). Obviously, that is a fixed amount of time. If \(f(n) = 1 \), then \(f(n) \) is a polynomial of degree 0, and \(f(n) \) is \(\Theta(1) \).

Big-O and big-Theta notation and logarithms

Logarithms grow very slowly, much slower than any polynomial. We will encounter algorithms whose time function is \(\Theta(n \log_2(n)) \). That is
only slightly worse than $\Theta(n)$. Here are a few approximate values of n, $n \log_2(n)$ and n^2.

<table>
<thead>
<tr>
<th>n</th>
<th>$n \log_2(n)$</th>
<th>n^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>700</td>
<td>10,000</td>
</tr>
<tr>
<td>1000</td>
<td>10,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>10,000</td>
<td>300,000</td>
<td>100,000,000</td>
</tr>
</tbody>
</table>

Exercises

Read page 36A in the notes. Do the exercises at the bottom of page 36A.