Write clear, readable answers for each of the following. You will be graded down for sloppy work and for work that is difficult to understand.

1. Consider the following equation.

\[\sum_{i=1}^{n} (i - 1) \cdot 2^i = (n - 2)2^{n+1} + 4 \]

(a) Show that equation (1) is true for \(n = 1 \) and \(n = 2 \). If you cannot do that, make sure that you understand what equation (1) says.
(b) Using Peano induction, prove that equation (1) holds for every positive integer n. Make your proof clear and readable.
2. Suppose that $P(n)$ is the assertion “It is possible to make a total of n dollars using only 3-dollar bills and 5-dollar bills.” (Never mind that there are no 3-dollar bills in the USA.)

(a) Show that $P(8)$, $P(9)$ and $P(10)$ are true.
(b) Using strong induction, show that \(P(n) \) is true for every \(n \geq 8 \). Make your proof clear and readable.
3. What is wrong with the following proof? Address the proof, not the conclusion. Say where the proof makes a mistake, not whether what is being proved is true or false.

Claim. For every finite nonempty set \(S \) of hats, all of the hats in set \(S \) have the same size.

Proof. Assume that the claim is false. That is, there exists a finite nonempty set of hats whose members do not all have the same size. We call such a set a counterexample.

Choose a smallest counterexample set \(S \). Let \(n = |S| \). Notice that \(n \neq 1 \) since then all hats in \(S \) would have the same size.

So \(n > 1 \). Choose two different proper subsets \(A \) and \(B \) of \(S \), each of size \(n - 1 \), where \(A \cup B = S \). Since \(A \) and \(B \) are smaller than \(S \), they cannot be counterexamples. So all hats in \(A \) have the same size \(s_1 \) and all hats in \(B \) have the same size \(s_2 \).

Choose a member \(h \) of \(A \cap B \). Since \(h \in A \), \(h \) has size \(s_1 \). Since \(h \in B \), \(h \) has size \(s_2 \). So \(s_1 = s_2 \). So all members of \(A \) have size \(s_1 \) and all members of \(B \) also have size \(s_1 \). So all members of \(S \) have size \(s_1 \). That contradicts the assumption that \(S \) is a counterexample.

Answer: