SGN 6245: Software Construction
Spring 2018

Class Meeting | Monday and Wednesday, 2:00pm – 3:15pm
Brewster Building, Room B-204 (Global Classroom)

Instructor | Dr. Mark Hills

Office | Science & Technology Building, C-110

Office Hours | Tuesday 1:00pm – 3:00pm
Wednesday 10:00am – 11:00am
Thursday 10:00am – 12:00pm
Or by appointment

Phone | 252-328-9692
Email | hillsma@ecu.edu (response within 24 hours during the week, possibly longer on weekends)
Course web page | https://blackboard.ecu.edu
Slack | https://ecu-seng-6245-s2018.slack.com

Course Summary

The catalog description for this course is as follows:

Application of software specifications, design patterns, object-oriented design and concurrent programming, and testing techniques for designing, constructing, and testing large-scale software systems.

The course teaches software construction including object-oriented programming and software unit testing. The course discusses and illustrates the concepts such as modularization, specification, information hiding, concurrency, abstraction, generics, design patterns, and parameterized unit testing. The purpose of this course is to give the students a solid understanding of modern software construction, and to prepare students to construct high quality programs.

Prerequisites

The prerequisite for this course is SENG 6230 or the consent of the instructor. You are expected to be familiar with Java at the level of a student that has successfully completed the material typically covered in an introductory computer science sequence, such as the material in SENG 5000. If you are familiar with a similar language, especially C#, adapting to Java should be fairly straight-forward. If you are not familiar with Java, please read, and go through the exercises in, the optional course text, Schildt’s “Java: A Beginner’s Guide”. You should also look at the posted Lynda videos, especially “Java 8 Essential Training”. If you do not have any programming experience, you must take SENG 5000 before taking this course, this is not an introductory course.
Learning Outcomes

After taking this course, you should be able to:

- understand concepts of program abstraction, specification, generics, concurrency, and object-oriented design and programming;
- develop software using sound programming principles;
- develop algorithms for computational problems, including algorithms that require sophisticated representation of information, and be able to demonstrate the correctness of those algorithms;
- understand basic concepts of software testing and perform software testing using software testing tools.

Textbooks

There are four textbooks for the course, one required, one recommended, and two optional. One of these is not listed as an official course text since it was just released (the official release date is January 2018).

The required textbook is *Program Development in Java: Abstraction, Specification, and Object-Oriented Design*, by Barbara Ryder and John Guttag. This book is available through Amazon.com at https://www.amazon.com/Program-Development-Java-Specification-Object-Oriented/dp/0201657686/ and should also be available through the ECU campus bookstore. You can also access this book using the Safari online book service, which is available for free if you are an ACM member. This book covers an older version of Java, so we will discuss how newer features in the language impact the examples in the textbook.

The recommended textbook is *Code Complete: A Practical Handbook of Software Construction*, 2nd edition, by Steve McConnell. This book is available through Amazon.com at https://www.amazon.com/Code-Complete-Practical-Handbook-Construction/dp/0735619670 and should also be available through the ECU campus bookstore. You can also access this book using the Safari online book service, which is available for free if you are an ACM member.

The optional textbooks are *Java: A Beginner’s Guide*, 7th edition, by Herbert Schildt, and *Effective Java*, 3rd edition, by Joshua Bloch. These books are available through Amazon.com at https://www.amazon.com/Java-Beginners-Seventh-Herbert-Schildt/dp/1259589315/ and https://www.amazon.com/Effective-Java-3rd-Joshua-Bloch/dp/0134685997/, respectively, and should also be available through the ECU campus bookstore. You can also access both books using the Safari online book service, which is available for free if you are an ACM member. We will discuss items from the second of these books in class.

Other helpful material, including references to books, conference or journal articles, tutorials on the web, and videos will be posted as the course progresses.
Exams

The final exam for the course will be on **Friday, April 27th**, from **2pm – 4:30pm** in our normal classroom. More details about the exam will be available closer to the exam date. The exam will be a closed book exam, but you will be allowed to bring one page (letter size, front and back) of hand-written notes. We will review for the exam on Monday, April 23rd, which is the last day of class.

There will not be a midterm exam. Instead, we will have a number of hands-on activities over software construction topics, outside of the normal homework assignments, throughout the semester.

If you are taking the course online, you must have a proctor for the final exam. You must use the University of North Carolina Proctoring Network. More information can be found at: http://online.northcarolina.edu/exams/overview.htm

Grading

Students will be evaluated based on a combination of homework assignments, completion of the hands-on activities, and the final exam. The following grade cut-offs, using a 100 point scale, will be used:

<table>
<thead>
<tr>
<th>Grading</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≥ 90</td>
</tr>
<tr>
<td>B</td>
<td>≥ 80</td>
</tr>
<tr>
<td>C</td>
<td>≥ 70</td>
</tr>
<tr>
<td>F</td>
<td>< 70</td>
</tr>
</tbody>
</table>

This grade is based on the following relative weights of the various activities:

<table>
<thead>
<tr>
<th>Weighting</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>40%</td>
</tr>
<tr>
<td>Hands-On Activities</td>
<td>20%</td>
</tr>
<tr>
<td>Research Project/Lesson</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
</tr>
</tbody>
</table>

Homework assignments will be due roughly every two weeks. Hands-on activities will be issues periodically throughout the semester. More details about the homework, the hands-on activities, and the research project/lesson will be made available during the course.

Starfish

This course uses the Starfish system to provide you with information on your performance within the course. For more information, please see http://www.ecu.edu/cs-acad/advising/upload/Starfish-Student-Getting-Started.pdf.
Student conduct

Smoking is not permitted in classrooms. Please turn off telephones while in class. Laptops and tablets can be used for taking notes, but should not be used for other work (or recreational browsing, playing games, etc).

Students are expected to abide by the university's Student Honor Code. The homework, including programming assignments, hands-on activities, and the research project/lesson, that you do is a critical part of your education. Each student is expected to do his or her own work, except where teamwork is explicitly allowed or required. That does not mean you are not allowed to discuss your ideas with other students. Working in groups can be beneficial, and I encourage you to talk through ideas with other students. But outright copying, either from other students or from other sources (e.g., textbooks, websites) is plagiarism and is unacceptable. Students who copy other students' work, or who allow their work to be copied, or who copy their work from other sources, such as the internet, are violating the ECU academic integrity policy. Not only that, if you are copying your answers instead of doing the work yourself, you are essentially missing the entire point of this course, which will come back to haunt you when you don’t know this material at a future employer.

Other potential academic integrity violations are cheating, falsification, multiple submissions of the same work in different classes, and attempts at any of these violations. Please see http://www.ecu.edu/cs-studentlife/policyhub/academic_integrity.cfm for more details.

Academic integrity violations can result in a grade penalty up to and including an F for the course.

Other Policies

No incompletes will be issued in this course except for extraordinary circumstances, and even then only if you are nearly done already, and have done work of acceptable quality, so that you have a realistic chance to pass the course.

All homework solutions, hands-on activities, and submissions for the research project/lesson, are due by the posted due date and time. Late submissions will not generally be accepted. If for some reason you are not able to complete the assignment on time, you must contact me directly with an explanation and request an extension before the deadline. If something comes up and you are having trouble keeping up with the class, talk to me right away, don’t wait until the end of the semester!

Course participation is an important part of the course. If you do not participate you will make it harder to have the kinds of discussions we need to make the class interesting. Please read any assigned readings in a timely fashion, do the homework promptly when it is made available (so you know if you are going to get stuck!), and come to class prepared to talk.

Success in the class is directly correlated with class attendance, so I highly recommend that you attend and actively participate. If for some reason you cannot
attend, please let me know – my expectation is that you will watch the lecture online and ask me questions about the material if you have any. For online students, I recommend that you watch the lecture the day it is given and send any questions before the next class session (so I can address them in class). Falling behind will make the course more difficult than it would otherwise be. I will be taking attendance at regular points in the class for my own records.

All code, test scripts, and other software artifacts must be stored in GitHub. I will not accept programming assignments submitted through Blackboard or emailed to me. If you have questions about your code, check it in to the related GitHub repository, that way I can easily look at it. Sending screenshots of your code is generally not helpful.

Weather emergencies

In the event of a weather emergency, information about ECU can be obtained through the following sources:

- **ECU emergency notices** http://www.ecu.edu/alert
- **ECU emergency information hotline** 252-328-0062

Students with disabilities

East Carolina University seeks to comply fully with the Americans with Disabilities Act (ADA). Students requesting accommodations based on a disability must be registered with the Department for Disability Support Services located in Slay 138 ((252) 737-1016 (Voice/TTY)).

For more information, please see http://www.ecu.edu/cs-studentlife/dss/.

Caveats

Occasionally, it may be necessary to revise this syllabus due to extenuating circumstances. I reserve the right to revise this syllabus if the need arises. If I do so, I will inform you of the changes on Blackboard.