
Streamlining Control-Flow Graph Construction 
with DCFlow

http://www.rascal-mpl.org

Mark Hills

7th International Conference on Software Language Engineering (SLE 2014)

September 15-16, 2014

Västerås, Sweden

1

http://www.rascal-mpl.org

Say you need a control flow graph…

10

y := 10

exit

15

y := 15

3

x := 3

x

true false

entry
entry

3
x := 3
x

exit

15
y := 15

10
y := 10

false true

2

First, define the basics!

• Nodes
10

y := 10

exit

15

y := 15

3

x := 3

x

true false

entry

3

First, define the basics!

• Nodes

• Edges 
 

10

y := 10

exit

15

y := 15

3

x := 3

x

true false

entry

4

First, define the basics!

• Nodes

• Edges 
 
(maybe with labels)

10

y := 10

exit

15

y := 15

3

x := 3

x

true false

entry

5

First, define the basics!

• Nodes

• Edges 
 
(maybe with labels)

• Graphs (maybe with extra info, 
not just nodes and edges)

10

y := 10

exit

15

y := 15

3

x := 3

x

true false

entry

6

CFG basics, for Pico (example from Rascal library)

• Four types of nodes: entry, exit, choice, and statement nodes

• Implicit edges based on graph over nodes, no labels

• Explicit tracking of entry and exit nodes

public data CFNode
= entry(loc location)
| exit()
| choice(loc location, EXP exp)
| statement(loc location, STATEMENT stat);

alias CFGraph = tuple[set[CFNode] entry, Graph[CFNode] graph, set[CFNode] exit];

7

Second, define the control flow

• Flow based on semantics of each construct

• May have a lot of boilerplate code

CFGraph cflowStat(s:asgStat(PicoId Id, EXP Exp)) {
 S = statement(s@location, s);
 return <{S}, {}, {S}>;
}

CFGraph cflowStat(ifElseStat(EXP Exp, list[STATEMENT] Stats1, list[STATEMENT] Stats2)){
 CF1 = cflowStats(Stats1); CF2 = cflowStats(Stats2);
 E = {choice(Exp@location, Exp)};
 return < E, (E * CF1.entry) + (E * CF2.entry) + CF1.graph + CF2.graph,

CF1.exit + CF2.exit >;
}

8

Third (optional), do something useful with it!
public rel[stat, def] reachingDefinitions(

rel[stat,var] DEFS, rel[stat,stat] PRED)
{

set[stat] STATEMENT = carrier(PRED);
rel[stat,def] DEF = definition(DEFS);
rel[stat,def] KILL = kill(DEFS);

rel[stat,def] IN = {};
rel[stat,def] OUT = DEF;

solve (IN, OUT) {
 IN = {<S, D> | int S <- STATEMENT,

stat P <- predecessors(PRED,S), def D <- OUT[P]};
 OUT = {<S, D> | int S <- STATEMENT,

def D <- DEF[S] + (IN[S] - KILL[S])};
};
return IN;

}

9

What if we want to work with another language?

• May be able to reuse base CFG definition (but maybe not)

• Cannot reuse flow definition (unless CFG def is the same and
feature has identical semantics)

• Cannot easily reuse analysis (since CFG definition and
semantics differ)

10

What if we want to work with another language?

• May be able to reuse base CFG definition (but maybe not)

• Cannot reuse flow definition (unless CFG def is the same and
feature has identical semantics)

• Cannot easily reuse analysis (since CFG definition and
semantics differ) 
 
So, we write the entire thing over again  
(and again, and again…)

11

Motivating Questions

• Can we create a DSL to make this process easier?

• Provide uniform definition of control-flow graphs

• Generate CFG extraction code, including all the boilerplate

• Provide a declarative definition that should be easier to keep up to
date as the language evolves

• What shouldn’t the DSL do?

• Don’t try to do everything, give an “escape hatch” into Rascal

12

DCFlow: Declarative Control Flow

• Declarative DSL for defining control flow rules

• Generates Rascal code to build intraprocedural control flow
graphs with reusable library of CFG concepts

• Provides basic visualization to allow graphs to be rendered in
GraphViz dot

• Provides ignore mechanism to indicate which language
constructs we are not trying to define

• IDE provides basic checking to aid user (with more coming)

13

DCFlow Architecture

DCFlow
Translator
(Rascal)

DCFlow
Definition

Source Program
(Input Language)

DCFlow Libraries
(Rascal)

Language-Specific
Functions (Rascal)

CFG Builder
Modules
(Rascal)

CFG Construction
(Rascal)

Control Flow
Graphs (Rascal)

CFG Visualization
(Rascal)

GraphViz
Visualizations
(GraphViz,dot)

14

Design Decisions

• Focus on abstract syntax trees (should  
almost work on Rascal concrete syntax,  
but there are some differences)

• Leverage reified types for generation and checking

• Try to ensure added features are general — don’t want to add
something just because PHP or Java needs it

• Make sure generated code is understandable — it should look
close to what you would write yourself

15

The basics: entries, exits, and basic flow
module Pico
ast demo::lang::Pico::Abstract;
import lang::pico::CFGBase;
context PROGRAM::program;
astType PROGRAM;

rule PROGRAM::program = entry(stats), exit(stats);
rule EXP::add = entry(left) --> right --> exit(self);
rule EXP::sub = entry(left) --> right --> exit(self);
rule EXP::conc = entry(left) --> right --> exit(self);
rule EXP::id = entry(self), exit(self);
rule EXP::strCon = entry(self), exit(self);
rule EXP::natCon = entry(self), exit(self);
rule STATEMENT::asgStat = entry(exp) --> exit(self);

16

Reified types in Rascal
 cons(
 label(
 "add",
 adt(
 "EXP",
 [])),
 [
 label(
 "left",
 adt(
 "EXP",
 [])),
 label(
 "right",
 adt(
 "EXP",
 []))
],
 [],
 (),
 {}),

public data EXP =
 id(PicoId name)
 | natCon(int iVal)
 | strCon(str sVal)
 | add(EXP left, EXP right)
 | sub(EXP left, EXP right)
 | conc(EXP left, EXP right)
 ;

17

Introducing some useful shorthands
module Pico
ast demo::lang::Pico::Abstract;
import lang::pico::CFGBase;
context PROGRAM::program;

rule PROGRAM::program = ^$stats;
rule PROGRAM::program = entry(stats), exit(stats);
rule EXP::add EXP::sub EXP::conc = ^left -> right -> $self;
rule EXP::add = entry(left) --> right --> exit(self);
rule EXP::id EXP::strCon EXP::natCon = ^$self;
rule STATEMENT::asgStat = ^exp -> $self;
rule STATEMENT::asgStat = entry(exp) --> exit(self);

18

Creating nodes and labeling edges

rule STATEMENT::ifElseStat = ^exp,
 exp -conditionTrue-> exit(thenpart,exp),
 exp -conditionFalse-> exit(elsepart,exp);

rule STATEMENT::whileStat =
 ^$exp -conditionTrue-> body -backedge-> exp,
 exp -conditionFalse-> create(footer);

19

Structured and unstructured jumps
context Script::script ClassItem::method Stmt::function;
structured target \break \continue;
unstructured target goto;
rule Stmt::goto = jump(\label),^$self;

rule Stmt::\while = create(footer),
jumpTarget(cond,\continue),
jumpTarget(footer,\break),
^$cond -conditionTrue-> body -backedge-> cond,
cond -conditionFalse-> footer;

rule Stmt::\break = entry(breakExpr,self) --> $self,
jump(breakExpr,\break);

rule Stmt::\continue = entry(continueExpr,$self) --> self,
jump(continueExpr,\continue);

20

How does the generated code look?

tuple[FlowEdges,LabelState] internalFlow(EXP item:add(EXP left,EXP right),
LabelState ls)

{
 FlowEdges edges = { };
 < edges, ls > = addEdges(edges, ls, left);
 < edges, ls > = addEdges(edges, ls, right);
 for(exlab <- exit(left,ls)) {
 < edges, ls > = linkItemsLabelLabel(edges, ls, exlab, entry(right,ls));

}
 for(exlab <- exit(right,ls)) {
 < edges, ls > = linkItemsLabelLabel(edges, ls, exlab, item@lab);

}
 return < edges, ls >;
}

21

Evaluation: Comparing to Custom Tools

• Hand-built CFG extractor for Pico: 45 lines of code, 11 for
headers and declarations, 34 for extraction rules

• DC-Flow Pico definition: 4 header lines, 6 rules — but
generates 408 lines of Rascal

• PHP: 1583 lines of Rascal for hand-built, currently 85 lines of
code (fewer rules, some of these are for rules on multiple lines),
generates 2714 lines of Rascal, plus around 230 lines for parts
written directly in Rascal

22

Evaluation: Comparing to DeFacto

• Very similar required effort for small languages

• Hard to tell for larger languages with more involved control
flow, need to resurrect DeFacto to perform comparison

• DeFacto works over concrete syntax, DCFlow works over
abstract syntax

• DeFacto is more general fact extraction language, DCFlow is
more focused on control flow, has more tailored syntax, has
access to Rascal features

23

Evaluation: Can we use it in an analysis?

• Implemented reaching defs analysis to show this works in
theory (code given in paper)

• Should be able to evaluate soon in PHP to verify it works in
practice

24

Current limitations

• Exceptions

• Adding try/catch is the easy part

• Adding exception flow edges in a generic way is harder

• No current support for interprocedural control flow graphs

• Current implementation needs more convenience functions to
be easily usable as a black box

25

Future work

• Add support for exceptions (if this can be added generically)

• Merge generated CFG code into PHP AiR framework

• Integrate DC-Flow generation with Rascal Resources
framework

• Add improved support for visualization

26

• Rascal: http://www.rascal-mpl.org

• Me: http://www.cs.ecu.edu/hillsma

27

Thank you!
Any Questions?

Discussion

http://www.rascal-mpl.org
http://www.cs.ecu.edu/hillsma

Related work

• “Extensible intraprocedural flow analysis at the abstract syntax
tree level”, Söderberg, Ekman, Hedin, Magnusson

• Uses attribute grammars to represent control flow

• Reference attributes represent edges

• Collection attributes represent inverse relations (e.g., pred)

• Higher-order attributes allow building new AST nodes (e.g.,
entry and exit)

Related work

• Spoofax: NaBL, language for incremental type checking

• DHAL and variants for data flow analysis

• Related conceptually — use domain-specific languages for
specific analysis-related tasks

